搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气压Ar/NH3介质阻挡辉光放电的仿真研究

张增辉 张冠军 邵先军 常正实 彭兆裕 许昊

大气压Ar/NH3介质阻挡辉光放电的仿真研究

张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊
PDF
导出引用
导出核心图
  • 为了研究大气压下氩气(Ar)中掺杂氨气(NH3)的Ar/NH3介质阻挡辉光放电的放电机理, 通过建立一个多粒子的自洽耦合流体模型, 采用有限元方法进行数值计算, 得到了气体间隙压降、介质表面电荷密度、放电电流密度随时间的周期变化波形, 以及带电粒子、中性粒子与空间电场强度的时空分布. 仿真计算结果表明: 气体间隙的周期击穿过程主要由气隙电压控制, 并受气隙两侧介质极板上积聚的表面电荷的影响. 气隙间带电粒子密度和电场强度的时空分布表明本文的放电过程存在阴极位降区、 负辉区、法拉第暗区、等离子体正柱区等辉光放电的典型区域, 放电模式为大气压辉光放电. 在Ar/NH3 等离子体中, 主要的正离子为NH3+, 其次为Ar2+, 主要的负离子为NH2-; NH3分解产生的主要的激发态分子为NH, NH2和N2H3, 而最终的稳态产物主要是N2和H2.
    • 基金项目: 国家杰出青年科学基金(批准号: 51125029)资助的课题.
    [1]

    Luo H Y, Wang X X, Mao T, Liang Z, Lv B, Guan Z C, Wang L M 2008 Acta Phys. Sin. 57 4298 (in Chinese) [罗海云, 王新新, 毛婷, 梁卓, 吕博, 关志成, 王黎明 2008 物理学报 57 4298]

    [2]

    Li C R, Wang X X 2002 High Voltage Engineering 28 41 (in Chinese) [李成榕, 王新新 2002 高电压技术 28 41]

    [3]

    Kanazawa S, Kogoma M, Moriwaki T, Okazaki S 1988J. Phys. D 21 838

    [4]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950

    [5]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2002 J. Phys. D 35 751

    [6]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke, J F 2003 J. Phys. D 36 39

    [7]

    Zhang P, Kortshagen U 2006 J. Phys. D 39 153

    [8]

    Choi Y H, Kim J H , Hwang Y S 2006 Thin. Solid. Films. 506/507 389

    [9]

    Maiorov V A, Golubovskii Y B 2007 Plasma Sources Sci. Technol 16 S67

    [10]

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694 (in Chinese) [王艳辉, 王德真 2003 物理学报 52 1694]

    [11]

    Wang Y H, Wang D Z 2005 Acta Phys. Sin. 54 1295 (in Chinese) [王艳辉, 王德真 2005 物理学报 54 1295]

    [12]

    Lv B, Wang X X, Luo H Y, Liang Z 2008 Advanced Technology of Electrical Engineering and Energy 27 63 (in Chinese) [吕博, 王新新, 罗海云, 梁卓 2008 电工电能新技术 27 63]

    [13]

    Massines F, Gherardi N, Naudé N, Ségur P 2009 Eur. Phys. J. Appl. Phys. 47 1

    [14]

    Brandenburg R, Navrátil Z, Jánský J, St'ahel P, Trunec D, Wagner H E 2009 J. Phys. D 42 085208

    [15]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Control. Fusion 47 B577

    [16]

    Okazaki S, Kogoma M, Uehara M, Kimura Y 1993 J. Phys. D 26 889

    [17]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (1st Edn.) (New Jersey: Wiley-Interscience) p121

    [18]

    Fateev A, Leipold F, Kusano Y, Stenum B, Tsakadze E, Bindslev H 2005 Plasma Process. Polym. 2 193

    [19]

    Li Z, Zhao Z, Li X H 2012 Phys. Plasmas 19 033510

    [20]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782

    [21]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]

    [22]

    Hagelaar G J M, Pitchford L C 2005 Plasma Source Sci. Tech. 14 722

    [23]

    De B K, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409

    [24]

    Nienhuis G J, Goedheer W J, Hamers E A G 1997 J. Appl. Phys. 82 2060

    [25]

    Moravej M, Yang X, Barankin M, Penelon J, Babayan S E, Hicks R F 2006 Plasma Source Sci. Tech. 15 204

    [26]

    Min B K, Lee S H, Park H G 2000 J. Vac. Sci. Technol. A 18 349

    [27]

    Dyatko N A, Ionikh Y Z, Kochetov I V, Marinov D L, Meshchanov A V, Napartovich A P, Petrov F B, Starostin S A 2008 J. Phys. D 41 055204

    [28]

    Arakoni R A, Bhoj A N, Kushner M J 2007 J. Phys. D 40 2476

    [29]

    Sharp T, Dowell J 1969 J. Chem. Phys. 50 3024

    [30]

    Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas. Tech. 131 145

    [31]

    Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas. Tech. 131 153

    [32]

    Morrow R, Sato N 1999 J. Phys. D 32 L20

    [33]

    Codina R 1998 Comput. Metholds Appl. Mech. Eng. 156 185

  • [1]

    Luo H Y, Wang X X, Mao T, Liang Z, Lv B, Guan Z C, Wang L M 2008 Acta Phys. Sin. 57 4298 (in Chinese) [罗海云, 王新新, 毛婷, 梁卓, 吕博, 关志成, 王黎明 2008 物理学报 57 4298]

    [2]

    Li C R, Wang X X 2002 High Voltage Engineering 28 41 (in Chinese) [李成榕, 王新新 2002 高电压技术 28 41]

    [3]

    Kanazawa S, Kogoma M, Moriwaki T, Okazaki S 1988J. Phys. D 21 838

    [4]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950

    [5]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke J F 2002 J. Phys. D 35 751

    [6]

    Golubovskii Y B, Maiorov V A, Behnke J, Behnke, J F 2003 J. Phys. D 36 39

    [7]

    Zhang P, Kortshagen U 2006 J. Phys. D 39 153

    [8]

    Choi Y H, Kim J H , Hwang Y S 2006 Thin. Solid. Films. 506/507 389

    [9]

    Maiorov V A, Golubovskii Y B 2007 Plasma Sources Sci. Technol 16 S67

    [10]

    Wang Y H, Wang D Z 2003 Acta Phys. Sin. 52 1694 (in Chinese) [王艳辉, 王德真 2003 物理学报 52 1694]

    [11]

    Wang Y H, Wang D Z 2005 Acta Phys. Sin. 54 1295 (in Chinese) [王艳辉, 王德真 2005 物理学报 54 1295]

    [12]

    Lv B, Wang X X, Luo H Y, Liang Z 2008 Advanced Technology of Electrical Engineering and Energy 27 63 (in Chinese) [吕博, 王新新, 罗海云, 梁卓 2008 电工电能新技术 27 63]

    [13]

    Massines F, Gherardi N, Naudé N, Ségur P 2009 Eur. Phys. J. Appl. Phys. 47 1

    [14]

    Brandenburg R, Navrátil Z, Jánský J, St'ahel P, Trunec D, Wagner H E 2009 J. Phys. D 42 085208

    [15]

    Massines F, Gherardi N, Naudé N, Ségur P 2005 Plasma Phys. Control. Fusion 47 B577

    [16]

    Okazaki S, Kogoma M, Uehara M, Kimura Y 1993 J. Phys. D 26 889

    [17]

    Lieberman M A, Lichtenberg A J 1994 Principles of Plasma Discharges and Materials Processing (1st Edn.) (New Jersey: Wiley-Interscience) p121

    [18]

    Fateev A, Leipold F, Kusano Y, Stenum B, Tsakadze E, Bindslev H 2005 Plasma Process. Polym. 2 193

    [19]

    Li Z, Zhao Z, Li X H 2012 Phys. Plasmas 19 033510

    [20]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE Trans. Plasma Sci. 36 2782

    [21]

    Zhang Z H, Shao X J, Zhang G J, Li Y X, Peng Z Y 2012 Acta Phys. Sin. 61 045205 (in Chinese) [张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕 2012 物理学报 61 045205]

    [22]

    Hagelaar G J M, Pitchford L C 2005 Plasma Source Sci. Tech. 14 722

    [23]

    De B K, Bogaerts A, Gijbels R, Goedheer W 2004 Phys. Rev. E 69 056409

    [24]

    Nienhuis G J, Goedheer W J, Hamers E A G 1997 J. Appl. Phys. 82 2060

    [25]

    Moravej M, Yang X, Barankin M, Penelon J, Babayan S E, Hicks R F 2006 Plasma Source Sci. Tech. 15 204

    [26]

    Min B K, Lee S H, Park H G 2000 J. Vac. Sci. Technol. A 18 349

    [27]

    Dyatko N A, Ionikh Y Z, Kochetov I V, Marinov D L, Meshchanov A V, Napartovich A P, Petrov F B, Starostin S A 2008 J. Phys. D 41 055204

    [28]

    Arakoni R A, Bhoj A N, Kushner M J 2007 J. Phys. D 40 2476

    [29]

    Sharp T, Dowell J 1969 J. Chem. Phys. 50 3024

    [30]

    Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas. Tech. 131 145

    [31]

    Cook D C, Haydon S C 1984 IEE Proc. Sci. Meas. Tech. 131 153

    [32]

    Morrow R, Sato N 1999 J. Phys. D 32 L20

    [33]

    Codina R 1998 Comput. Metholds Appl. Mech. Eng. 156 185

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4545
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-10
  • 修回日期:  2012-07-15
  • 刊出日期:  2012-12-05

大气压Ar/NH3介质阻挡辉光放电的仿真研究

  • 1. 西安交通大学电气工程学院, 电力设备电气绝缘国家重点实验室, 西安 710049
    基金项目: 

    国家杰出青年科学基金(批准号: 51125029)资助的课题.

摘要: 为了研究大气压下氩气(Ar)中掺杂氨气(NH3)的Ar/NH3介质阻挡辉光放电的放电机理, 通过建立一个多粒子的自洽耦合流体模型, 采用有限元方法进行数值计算, 得到了气体间隙压降、介质表面电荷密度、放电电流密度随时间的周期变化波形, 以及带电粒子、中性粒子与空间电场强度的时空分布. 仿真计算结果表明: 气体间隙的周期击穿过程主要由气隙电压控制, 并受气隙两侧介质极板上积聚的表面电荷的影响. 气隙间带电粒子密度和电场强度的时空分布表明本文的放电过程存在阴极位降区、 负辉区、法拉第暗区、等离子体正柱区等辉光放电的典型区域, 放电模式为大气压辉光放电. 在Ar/NH3 等离子体中, 主要的正离子为NH3+, 其次为Ar2+, 主要的负离子为NH2-; NH3分解产生的主要的激发态分子为NH, NH2和N2H3, 而最终的稳态产物主要是N2和H2.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回