搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于选择性支持向量机集成的海杂波背景中的微弱信号检测

行鸿彦 祁峥东 徐伟

基于选择性支持向量机集成的海杂波背景中的微弱信号检测

行鸿彦, 祁峥东, 徐伟
PDF
导出引用
  • 基于复杂非线性系统相空间重构理论, 提出了一种混沌背景中微弱信号检测的选择性支持向量机集成的方法, 为了提高支持向量机集成的泛化能力, 采用K均值聚类算法选择每簇中精度最高的子支持向量机进行集成, 建立了混沌背景噪声的一步预测模型, 从预测误差中检测湮没在混沌背景噪声中的微弱目标信号(包括周期信号和瞬态信号), 最后分别以Lorenz系统和实测的IPIX雷达数据作为混沌背景噪声进行实验研究, 结果表明该方法能够有效地将混沌背景噪声中极其微弱的信号检测出来, 抑制噪声对混沌背景信号的影响, 与神经网络和传统支持向量机方法相比, 预测精度和检测门限方面的性能有显著提高.
    • 基金项目: 国家自然科学基金(批准号: 61072133)和江苏省"传感网与现代气象装备"优势学科平台资助的课题.
    [1]

    Haykin S, Li X B 1995 Proceedings IEEE 83 95

    [2]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin.49 403 (in Chinese) [张家树, 肖先赐 2000 物理学报 49 403]

    [3]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3771 (in Chinese) [行鸿彦, 徐伟 2007 物理学报 56 3771]

    [4]

    Zhang J F, Hu S S 2007 Acta Phys. Sin. 56 713 (in Chinese) [张军峰, 胡寿松 2007 物理学报 56 713]

    [5]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2004 Acta Phys. Sin. 53 3303 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2004 物理学报 53 3303]

    [6]

    Zhou Z H, Wu J X 2002 Artif. Intell 137 239

    [7]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [8]

    Cao L Y 1997 Physica D110 43

    [9]

    Kaplan D T, Glass L 1992 Phys. Rev. Lett. 68 427

    [10]

    Aguirre L A 1995 Phys. Lett. A 203 88

    [11]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [12]

    Takens F 1981 Lecture Notes in Mathematics 898 366

    [13]

    Leo B 1996 Mach. Learn. 21 123

    [14]

    Zhang L, Zhou W, Jiao L 2004 IEEE Trans. Syst. Man Cyb. B 34 34

    [15]

    Wu J X, Zhou Z H, Shen X H, Chen Z Q 2000 J. Comput. Res. Dev. 37 2000 (in Chinese) [吴建鑫, 周志华, 沈学华, 陈兆乾 2000 计算机研究与发展 37 2000]

    [16]

    Kanungo T, Mount D M, Netanyahu N S, Piatko C D, Silverman R, Wu A Y 2002 IEEE Trans. Pattern Anal. Mach. Intell. 24 881

    [17]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 140 (in Chinese) [行鸿彦, 金天力 2010 物理学报 59 140]

    [18]

    Du J Y, Hou Y B 2007 J. Sci. Instru. 28 555 (in Chinese) [杜京义, 侯媛彬 2007 仪器仪表学报 28 555]

    [19]

    Wang F Y, Yuan G N, Xie Y J, Qiao X W 2009 Radar. Sci. Technol. 7 53 (in Chinese) [王福友, 袁赣南, 谢燕军, 乔相伟 2009 雷达科学与技术 7 53]

  • [1]

    Haykin S, Li X B 1995 Proceedings IEEE 83 95

    [2]

    Zhang J S, Xiao X C 2000 Acta Phys. Sin.49 403 (in Chinese) [张家树, 肖先赐 2000 物理学报 49 403]

    [3]

    Xing H Y, Xu W 2007 Acta Phys. Sin. 56 3771 (in Chinese) [行鸿彦, 徐伟 2007 物理学报 56 3771]

    [4]

    Zhang J F, Hu S S 2007 Acta Phys. Sin. 56 713 (in Chinese) [张军峰, 胡寿松 2007 物理学报 56 713]

    [5]

    Cui W Z, Zhu C C, Bao W X, Liu J H 2004 Acta Phys. Sin. 53 3303 (in Chinese) [崔万照, 朱长纯, 保文星, 刘君华 2004 物理学报 53 3303]

    [6]

    Zhou Z H, Wu J X 2002 Artif. Intell 137 239

    [7]

    Grassberger P, Procaccia I 1983 Phys. Rev. Lett. 50 346

    [8]

    Cao L Y 1997 Physica D110 43

    [9]

    Kaplan D T, Glass L 1992 Phys. Rev. Lett. 68 427

    [10]

    Aguirre L A 1995 Phys. Lett. A 203 88

    [11]

    Kim H S, Eykholt R, Salas J D 1999 Physica D 127 48

    [12]

    Takens F 1981 Lecture Notes in Mathematics 898 366

    [13]

    Leo B 1996 Mach. Learn. 21 123

    [14]

    Zhang L, Zhou W, Jiao L 2004 IEEE Trans. Syst. Man Cyb. B 34 34

    [15]

    Wu J X, Zhou Z H, Shen X H, Chen Z Q 2000 J. Comput. Res. Dev. 37 2000 (in Chinese) [吴建鑫, 周志华, 沈学华, 陈兆乾 2000 计算机研究与发展 37 2000]

    [16]

    Kanungo T, Mount D M, Netanyahu N S, Piatko C D, Silverman R, Wu A Y 2002 IEEE Trans. Pattern Anal. Mach. Intell. 24 881

    [17]

    Xing H Y, Jin T L 2010 Acta Phys. Sin. 59 140 (in Chinese) [行鸿彦, 金天力 2010 物理学报 59 140]

    [18]

    Du J Y, Hou Y B 2007 J. Sci. Instru. 28 555 (in Chinese) [杜京义, 侯媛彬 2007 仪器仪表学报 28 555]

    [19]

    Wang F Y, Yuan G N, Xie Y J, Qiao X W 2009 Radar. Sci. Technol. 7 53 (in Chinese) [王福友, 袁赣南, 谢燕军, 乔相伟 2009 雷达科学与技术 7 53]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  3915
  • PDF下载量:  751
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-23
  • 修回日期:  2012-06-23
  • 刊出日期:  2012-12-05

基于选择性支持向量机集成的海杂波背景中的微弱信号检测

  • 1. 南京信息工程大学, 江苏省气象探测与信息处理重点实验室, 南京 210044; 南京信息工程大学电子与信息工程学院, 南京 210044
    基金项目: 

    国家自然科学基金(批准号: 61072133)和江苏省"传感网与现代气象装备"优势学科平台资助的课题.

摘要: 基于复杂非线性系统相空间重构理论, 提出了一种混沌背景中微弱信号检测的选择性支持向量机集成的方法, 为了提高支持向量机集成的泛化能力, 采用K均值聚类算法选择每簇中精度最高的子支持向量机进行集成, 建立了混沌背景噪声的一步预测模型, 从预测误差中检测湮没在混沌背景噪声中的微弱目标信号(包括周期信号和瞬态信号), 最后分别以Lorenz系统和实测的IPIX雷达数据作为混沌背景噪声进行实验研究, 结果表明该方法能够有效地将混沌背景噪声中极其微弱的信号检测出来, 抑制噪声对混沌背景信号的影响, 与神经网络和传统支持向量机方法相比, 预测精度和检测门限方面的性能有显著提高.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回