搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高风速下海洋飞沫水滴对拖曳系数的影响

史剑 周林 杨隆颖

高风速下海洋飞沫水滴对拖曳系数的影响

史剑, 周林, 杨隆颖
PDF
导出引用
导出核心图
  • 海面飞沫水滴改变着海气动量通量的分布, 从而在相当程度上影响着海面拖曳系数. 为了能够精确估计海面飞沫水滴对海面拖曳系数的影响, 推导出新的依赖于风速和海浪状态的海洋飞沫生成函数, 将该飞沫生成函数用在改进的飞沫动量通量计算公式中进行飞沫动量通量的计算, 发现本文提出的飞沫动量通量计算公式对海浪状态具有较强的敏感性, 能够清晰地表达海浪状态对飞沫动量通量的影响. 海面总动量通量包含飞沫动量通量和海气界面动量通量, 基于此理论, 得到高风速下受飞沫水滴影响的海面拖曳系数关系式, 从关系式的理论值可知, 在高风速下, 海面拖曳系数开始衰减, 说明高风速下海面飞沫水滴能够抑制拖曳系数值的增加. 将理论结果与实验室和外海测量值进行对比, 发现海面拖曳系数的理论值变化范围覆盖了测量值, 同时将该海面拖曳系数代入海浪模式进行台风浪模拟, 发现海浪模式能够较好地模拟出有效波高, 说明本文提出的新的海面拖曳系数公式能够合理地用在高风速条件下.
    • 基金项目: 国家自然科学基金 (批准号: 41106014) 资助的课题.
    [1]

    Zhang S W 2008 Acta Phys. Sin. 57 3287 (in Chinese) [张书文 2008 物理学报 57 3287]

    [2]

    Zhang S W, Chao R X, Zhu F Q 2011 Acta Phys. Sin. 60 119201 (in Chinese) [张书文, 曹瑞雪, 朱凤芹 2011 物理学报 60 119201]

    [3]

    Liu L, Fei J F, Huang X G, Cheng X P 2012 Acta Phys. Sin. 61 149201 (in Chinese) [刘磊, 费建芳, 黄小刚, 程小平 2012 物理学报 61 149201]

    [4]

    Andreas E L 2004 J. Phys. Oceanogr. 34 1429

    [5]

    Makin V K 2005 Bound. Layer Meteorol. 115 169

    [6]

    Munk W H 1955 Quart. J. Roy. Meteor. Soc. 81 320

    [7]

    Cavaleri L, Alves J H G M, Ardhuin F, Babanin A 2007 Progress in Oceanography 75 603

    [8]

    Powell M D, Vickery P J, Reinhold T A 2003 Nature 422 279

    [9]

    Andreas E L, DeCosmo J 2002 Bound. Layer Meteorol. 103 303

    [10]

    Pomeroy J W, Male D H 1987 Seasonal Snowcovers: Physics, Chemistry, Hydrology (Dordrecht: D. Reidel) p119

    [11]

    Raupach M R 1991 Acta Mech. 1 83

    [12]

    Shi J, Zhong Z, Li R J, Li Y, Sha W Y 2011 Acta Oceanologica Sinica 30 9

    [13]

    Liu L, Fei J F, Zhang L B, Huang X G, Cheng X P 2012 Acta Phys. Sin. 61 059201 (in Chinese) [刘磊, 费建芳, 章立标, 黄小刚, 程小平 2012 物理学报 61 059201]

    [14]

    Zhao D L, Toba Y, Suzuki Y, Komori S 2003 Tellus B 55 478

    [15]

    Andreas E L 1992 J. Geophys. Res. 97 11429

    [16]

    Iida N, Toba Y, Chaen M 1992 J. Oceanogr. 48 439

    [17]

    Wu J 1973 J. Geophys. Res. 78 511

    [18]

    Wu J 1993 J. Geophys. Res. 98 18221

    [19]

    Lai R J, Shemdin O H 1974 J. Geophys. Res. 79 3055

    [20]

    Zhao D, Toba Y, Sugioka K, Komori S 2006 J. Geophys. Res. 111 02007

    [21]

    Woolf D K, Monahan E C, Spiel D E 1988 Seventh Conference on Ocean-Atmosphere Interaction, Anaheim, Calif., February 1-5, 1988 p182

    [22]

    Monahan E C 1986 The Role of Air-Sea Exchange in Geochemical Cycling (Dordrecht: D. Reidel) p129

    [23]

    Lafon C, Piazzola J, Forget P, Calve O L, Despiau S 2004 Bound. Layer Meteorol. 111 339

    [24]

    Guan C L, Xie L 2004 J. Phys. Oceanogr. 34 2847

    [25]

    Guan C L, Hu W, Sun J, Li R L 2008 J. Geophys. Res. 112 C05031

    [26]

    Zhao D, Toba Y 2001 J. Oceanogr. 57 603

    [27]

    Fitzgerald J W 1975 J. Appl. Meteor. 14 1044

    [28]

    Wu J 1980 J. Phys. Oceanogr. 13 1441

    [29]

    Donelan M A, Haus B K, Reul N, Plant W J, Stiassnie M, Graber H C, Brown O B, Saltzman E S 2004 Geophys. Res. Lett. 31 L18306

    [30]

    Moon I J, Ginis I, Hara T, Thomas B 2007 Mon. Wea. Rev. 135 2869

    [31]

    Fan Y, Ginis I, Hara T, Wright C W, Walsh E J 2009 J. Phys. Oceanogr. 39 2097

    [32]

    Tolman H L, Chalikov D 1996 J. Phys. Oceanogr. 26 2497

    [33]

    Huang S X, Cai Q F, Xiang J, Zhang M 2007 Acta Phys. Sin. 56 3202 (in Chinese) [黄思训, 蔡其发, 项杰, 张铭 2007 物理学报 56 3202]

    [34]

    Zhou Y S, Cao J, Gao S T 2008 Acta Phys. Sin. 57 6654 (in Chinese) [周玉淑, 曹洁, 高守亭 2008 物理学报 57 6654]

  • [1]

    Zhang S W 2008 Acta Phys. Sin. 57 3287 (in Chinese) [张书文 2008 物理学报 57 3287]

    [2]

    Zhang S W, Chao R X, Zhu F Q 2011 Acta Phys. Sin. 60 119201 (in Chinese) [张书文, 曹瑞雪, 朱凤芹 2011 物理学报 60 119201]

    [3]

    Liu L, Fei J F, Huang X G, Cheng X P 2012 Acta Phys. Sin. 61 149201 (in Chinese) [刘磊, 费建芳, 黄小刚, 程小平 2012 物理学报 61 149201]

    [4]

    Andreas E L 2004 J. Phys. Oceanogr. 34 1429

    [5]

    Makin V K 2005 Bound. Layer Meteorol. 115 169

    [6]

    Munk W H 1955 Quart. J. Roy. Meteor. Soc. 81 320

    [7]

    Cavaleri L, Alves J H G M, Ardhuin F, Babanin A 2007 Progress in Oceanography 75 603

    [8]

    Powell M D, Vickery P J, Reinhold T A 2003 Nature 422 279

    [9]

    Andreas E L, DeCosmo J 2002 Bound. Layer Meteorol. 103 303

    [10]

    Pomeroy J W, Male D H 1987 Seasonal Snowcovers: Physics, Chemistry, Hydrology (Dordrecht: D. Reidel) p119

    [11]

    Raupach M R 1991 Acta Mech. 1 83

    [12]

    Shi J, Zhong Z, Li R J, Li Y, Sha W Y 2011 Acta Oceanologica Sinica 30 9

    [13]

    Liu L, Fei J F, Zhang L B, Huang X G, Cheng X P 2012 Acta Phys. Sin. 61 059201 (in Chinese) [刘磊, 费建芳, 章立标, 黄小刚, 程小平 2012 物理学报 61 059201]

    [14]

    Zhao D L, Toba Y, Suzuki Y, Komori S 2003 Tellus B 55 478

    [15]

    Andreas E L 1992 J. Geophys. Res. 97 11429

    [16]

    Iida N, Toba Y, Chaen M 1992 J. Oceanogr. 48 439

    [17]

    Wu J 1973 J. Geophys. Res. 78 511

    [18]

    Wu J 1993 J. Geophys. Res. 98 18221

    [19]

    Lai R J, Shemdin O H 1974 J. Geophys. Res. 79 3055

    [20]

    Zhao D, Toba Y, Sugioka K, Komori S 2006 J. Geophys. Res. 111 02007

    [21]

    Woolf D K, Monahan E C, Spiel D E 1988 Seventh Conference on Ocean-Atmosphere Interaction, Anaheim, Calif., February 1-5, 1988 p182

    [22]

    Monahan E C 1986 The Role of Air-Sea Exchange in Geochemical Cycling (Dordrecht: D. Reidel) p129

    [23]

    Lafon C, Piazzola J, Forget P, Calve O L, Despiau S 2004 Bound. Layer Meteorol. 111 339

    [24]

    Guan C L, Xie L 2004 J. Phys. Oceanogr. 34 2847

    [25]

    Guan C L, Hu W, Sun J, Li R L 2008 J. Geophys. Res. 112 C05031

    [26]

    Zhao D, Toba Y 2001 J. Oceanogr. 57 603

    [27]

    Fitzgerald J W 1975 J. Appl. Meteor. 14 1044

    [28]

    Wu J 1980 J. Phys. Oceanogr. 13 1441

    [29]

    Donelan M A, Haus B K, Reul N, Plant W J, Stiassnie M, Graber H C, Brown O B, Saltzman E S 2004 Geophys. Res. Lett. 31 L18306

    [30]

    Moon I J, Ginis I, Hara T, Thomas B 2007 Mon. Wea. Rev. 135 2869

    [31]

    Fan Y, Ginis I, Hara T, Wright C W, Walsh E J 2009 J. Phys. Oceanogr. 39 2097

    [32]

    Tolman H L, Chalikov D 1996 J. Phys. Oceanogr. 26 2497

    [33]

    Huang S X, Cai Q F, Xiang J, Zhang M 2007 Acta Phys. Sin. 56 3202 (in Chinese) [黄思训, 蔡其发, 项杰, 张铭 2007 物理学报 56 3202]

    [34]

    Zhou Y S, Cao J, Gao S T 2008 Acta Phys. Sin. 57 6654 (in Chinese) [周玉淑, 曹洁, 高守亭 2008 物理学报 57 6654]

  • [1] 宋萍, 蔡灵仓. Grüneisen系数与铝的高温高压状态方程. 物理学报, 2009, 58(3): 1879-1884. doi: 10.7498/aps.58.1879
    [2] 李伦, 吴雄斌, 徐兴安. 基于优化理论的高频地波雷达海浪参数反演. 物理学报, 2014, 63(3): 038403. doi: 10.7498/aps.63.038403
    [3] 王英霞, 姜文正, 乔方利, 陈思宇. 一种适于海浪测量的立体摄影物理模型. 物理学报, 2017, 66(5): 059201. doi: 10.7498/aps.66.059201
    [4] 黎雪刚, 杨坤德, 张同伟, 邱海宾. 基于拖曳倾斜线列阵的海底反射损失提取方法. 物理学报, 2009, 58(11): 7741-7749. doi: 10.7498/aps.58.7741
    [5] 陈科, 王宏伟, 盛立, 尤云祥. 拖曳体激发内波时空特性实验及其理论模型. 物理学报, 2018, 67(3): 034701. doi: 10.7498/aps.67.20170920
    [6] 姜文正, 袁业立, 王英霞. 无海面控制点的立体摄影海浪测量方法研究. 物理学报, 2012, 61(11): 119101. doi: 10.7498/aps.61.119101
    [7] 刘磊, 费建芳, 黄小刚, 程小平. 大气-海浪-海流耦合模式的建立和一次台风过程的初步试验. 物理学报, 2012, 61(14): 149201. doi: 10.7498/aps.61.149201
    [8] 迟静, 李小雷, 高大治, 王好忠, 王宁. 利用海浪噪声自相关实现散射体无源探测. 物理学报, 2017, 66(19): 194304. doi: 10.7498/aps.66.194304
    [9] 刘晶晶, 孙俊君, 胡海云, 邢修三. 海洋腐蚀条件下材料环境失效的寿命预测. 物理学报, 2005, 54(5): 2414-2417. doi: 10.7498/aps.54.2414
    [10] 许祯镛. 随机海洋声信道下的噪声场时空相关函数. 物理学报, 1976, 25(3): 246-253. doi: 10.7498/aps.25.246
    [11] 邵轩, 楚晓亮, 王剑, 许金菊. 风浪因素对海洋波导雷达回波作用机理的研究. 物理学报, 2012, 61(15): 159203. doi: 10.7498/aps.61.159203
    [12] 张宇, 管玉平, 陈朝晖, 刘海龙, 黄瑞新. 不同滤波方法对揭示全球海洋条带结构的比较. 物理学报, 2015, 64(14): 149201. doi: 10.7498/aps.64.149201
    [13] 方励之. 引力对真空状态的影响. 物理学报, 1978, 27(2): 181-186. doi: 10.7498/aps.27.181
    [14] 徐济安. 一个等温状态方程. 物理学报, 1976, 25(4): 324-326. doi: 10.7498/aps.25.324
    [15] 徐济安. 一个等温状态方程(Ⅱ). 物理学报, 1978, 27(3): 339-343. doi: 10.7498/aps.27.339
    [16] 宋建军, 张鹤鸣, 戴显英, 宣荣喜, 胡辉勇, 王冠宇. 不同晶系应变Si状态密度研究. 物理学报, 2011, 60(4): 047106. doi: 10.7498/aps.60.047106
    [17] 刘擎超, 陆建, 陈淑燕. 基于能力区域的交通状态预测方法. 物理学报, 2014, 63(14): 140504. doi: 10.7498/aps.63.140504
    [18] 袁坚, 肖先赐. 低信噪比下的状态空间重构. 物理学报, 1997, 46(7): 1290-1299. doi: 10.7498/aps.46.1290
    [19] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算. 物理学报, 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [20] 盛峥, 黄思训, 赵小峰. 雷达回波资料反演海洋波导中观测值权重的确定. 物理学报, 2009, 58(9): 6627-6632. doi: 10.7498/aps.58.6627
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1430
  • PDF下载量:  580
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-17
  • 修回日期:  2012-09-05
  • 刊出日期:  2013-02-05

高风速下海洋飞沫水滴对拖曳系数的影响

  • 1. 解放军理工大学气象学院, 南京 211101
    基金项目: 

    国家自然科学基金 (批准号: 41106014) 资助的课题.

摘要: 海面飞沫水滴改变着海气动量通量的分布, 从而在相当程度上影响着海面拖曳系数. 为了能够精确估计海面飞沫水滴对海面拖曳系数的影响, 推导出新的依赖于风速和海浪状态的海洋飞沫生成函数, 将该飞沫生成函数用在改进的飞沫动量通量计算公式中进行飞沫动量通量的计算, 发现本文提出的飞沫动量通量计算公式对海浪状态具有较强的敏感性, 能够清晰地表达海浪状态对飞沫动量通量的影响. 海面总动量通量包含飞沫动量通量和海气界面动量通量, 基于此理论, 得到高风速下受飞沫水滴影响的海面拖曳系数关系式, 从关系式的理论值可知, 在高风速下, 海面拖曳系数开始衰减, 说明高风速下海面飞沫水滴能够抑制拖曳系数值的增加. 将理论结果与实验室和外海测量值进行对比, 发现海面拖曳系数的理论值变化范围覆盖了测量值, 同时将该海面拖曳系数代入海浪模式进行台风浪模拟, 发现海浪模式能够较好地模拟出有效波高, 说明本文提出的新的海面拖曳系数公式能够合理地用在高风速条件下.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回