搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒强激光场中水分子的电离激发

王志萍 吴亚敏 鲁超 张秀梅 何跃娟

飞秒强激光场中水分子的电离激发

王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟
PDF
导出引用
导出核心图
  • 本文运用含时密度泛函理论和分子动力学非绝热耦合的方法, 研究了水分子在不同极化方向的激光场中的电离和动力学行为. 计算结果表明, 对应相同的极化方向, 随着激光强度的增加, 水分子的电离增强; 对于相同强度的激光, 当激光极化方向沿水分子对称轴方向时, 水分子的电离最强, 当激光极化方向垂直水分子对称轴方向时, 水分子电离受到最大程度的抑制. 对水分子偶极矩的研究表明, 当分子处于线性响应区域时, x方向的激光只能激发起x方向的偶极振动而y方向的激光只能激发起y方向的偶极振动. 对水分子的键长和键角的研究表明, 在激光场中水分子的键长变长, 键角变大, 但变化幅度随着激光极化角的增大而减小. 此外, 研究还发现, 虽然在不同极化方向的激光脉冲的驱动下, 水分子OH键的振动频率与激光频率相当, 在脉冲关闭后, 振动频率减小, 但激光场的极化方向对水分子振动模式具有选择性.
    • 基金项目: 国家自然科学基金 (批准号: 61178032), 中央高校基本科研业务费专项资金 (批准号: JUSRP11A21) 和江苏省高等教育学会十一五教育科学规划(批准号: JS053) 资助的课题.
    [1]

    Bukowski R, Szalewicz K, Groenenboon G C, Avoird Ad van der 2007 Science 2 1249

    [2]

    Lo S Y, Li W C, Huang S H 2000 Medi. Hypoth 54 948

    [3]

    Burda K, Bader K P, Schimd G H 2001 FEBS Letters 491 81

    [4]

    Auer B M, Skinner J L 2009 Chem. Phys. Lett. 470 13

    [5]

    Bour P 2002 Chem. Phys. Lett. 365 82

    [6]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [7]

    Qian P, Song W, Lu L 2010 Inter. J. Quan. Chem. 110 1923

    [8]

    Suzuki K 1998 Atmospheric Research 46 371

    [9]

    Estrin D A, Paglieri L, Corongiu G 1996 J. Phys. Chem. 100 8701

    [10]

    Geissler P L, Dellago C, Chandler D 2000 Chem. Phys. Lett. 321 225

    [11]

    Garbuio V, Cascella M, Reining L, Del Sole R, Pulci O 2006 Phys. Rev. Letters 97 137402

    [12]

    Hahn P H, Schmidt W G, Seino K, Preuss M, Bechstedt F, Bernholc J 2005 Phys. Rev. Lett. 94 037404

    [13]

    Hermann A, Schmidt W G, Schwerdtfeger P 2008 Phys. Rev. Lett. 100 207403

    [14]

    Garbuio V, Cascella M, Pulci O 2009 J. Phys. : Condens. Matt. 21 033101

    [15]

    Tajima T, Mima K, Baldis H 2000 High-Field Science (New York: Kluwer Academic/Plenum)

    [16]

    Xiong D L, Wang M S, Yang C L, Tong X F, Ma N 2010 Chin. Phys. B 19 103303

    [17]

    Wang S F, Qin Y D, Yang H, Wang D L, Zhu C J, Gong Q H 2001 Chin. Phys. 10 735

    [18]

    Chen D Y, Zhang S, Xia Y Q 2009 Chin. Phys. B 18 3073

    [19]

    Wong M C H, Brichta J P, Bhardwaj V R 2010 Optics Letters 35 1947

    [20]

    Zhao S F, Jin Chen, Lucchese R R, Le Anh-Thu, Lin C D 2011 Phys. Rev. A 83 033409

    [21]

    Son S K, Chu S I 2009 Chem. Phys. 366 91

    [22]

    Petretti S, Saenz A, Castro A, Decleva P 2012 Chem. Phys. doi:10.1016/j.chemphys.2012.01.011

    [23]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [24]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703

    [25]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [26]

    Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115

    [27]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)

    [28]

    Benedict W S, Gailar N, Plyler E K 1956 J. Chem. Phys. 24 1139

    [29]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [30]

    Lemus R 2004 J. Mol. Spectrosc. 225 73

  • [1]

    Bukowski R, Szalewicz K, Groenenboon G C, Avoird Ad van der 2007 Science 2 1249

    [2]

    Lo S Y, Li W C, Huang S H 2000 Medi. Hypoth 54 948

    [3]

    Burda K, Bader K P, Schimd G H 2001 FEBS Letters 491 81

    [4]

    Auer B M, Skinner J L 2009 Chem. Phys. Lett. 470 13

    [5]

    Bour P 2002 Chem. Phys. Lett. 365 82

    [6]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [7]

    Qian P, Song W, Lu L 2010 Inter. J. Quan. Chem. 110 1923

    [8]

    Suzuki K 1998 Atmospheric Research 46 371

    [9]

    Estrin D A, Paglieri L, Corongiu G 1996 J. Phys. Chem. 100 8701

    [10]

    Geissler P L, Dellago C, Chandler D 2000 Chem. Phys. Lett. 321 225

    [11]

    Garbuio V, Cascella M, Reining L, Del Sole R, Pulci O 2006 Phys. Rev. Letters 97 137402

    [12]

    Hahn P H, Schmidt W G, Seino K, Preuss M, Bechstedt F, Bernholc J 2005 Phys. Rev. Lett. 94 037404

    [13]

    Hermann A, Schmidt W G, Schwerdtfeger P 2008 Phys. Rev. Lett. 100 207403

    [14]

    Garbuio V, Cascella M, Pulci O 2009 J. Phys. : Condens. Matt. 21 033101

    [15]

    Tajima T, Mima K, Baldis H 2000 High-Field Science (New York: Kluwer Academic/Plenum)

    [16]

    Xiong D L, Wang M S, Yang C L, Tong X F, Ma N 2010 Chin. Phys. B 19 103303

    [17]

    Wang S F, Qin Y D, Yang H, Wang D L, Zhu C J, Gong Q H 2001 Chin. Phys. 10 735

    [18]

    Chen D Y, Zhang S, Xia Y Q 2009 Chin. Phys. B 18 3073

    [19]

    Wong M C H, Brichta J P, Bhardwaj V R 2010 Optics Letters 35 1947

    [20]

    Zhao S F, Jin Chen, Lucchese R R, Le Anh-Thu, Lin C D 2011 Phys. Rev. A 83 033409

    [21]

    Son S K, Chu S I 2009 Chem. Phys. 366 91

    [22]

    Petretti S, Saenz A, Castro A, Decleva P 2012 Chem. Phys. doi:10.1016/j.chemphys.2012.01.011

    [23]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [24]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703

    [25]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [26]

    Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115

    [27]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)

    [28]

    Benedict W S, Gailar N, Plyler E K 1956 J. Chem. Phys. 24 1139

    [29]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [30]

    Lemus R 2004 J. Mol. Spectrosc. 225 73

  • [1] 尹玉明, 赵伶玲. 离子浓度及表面结构对岩石孔隙内水流动特性的影响. 物理学报, 2020, 69(5): 054701. doi: 10.7498/aps.69.20191742
    [2] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [3] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [4] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [5] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [6] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比. 物理学报, 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [7] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [8] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [9] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [10] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [11] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [12] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [13] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
  • 引用本文:
    Citation:
计量
  • 文章访问数:  665
  • PDF下载量:  727
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-24
  • 修回日期:  2012-12-10
  • 刊出日期:  2013-04-05

飞秒强激光场中水分子的电离激发

  • 1. 江南大学理学院, 无锡 214122
    基金项目: 

    国家自然科学基金 (批准号: 61178032), 中央高校基本科研业务费专项资金 (批准号: JUSRP11A21) 和江苏省高等教育学会十一五教育科学规划(批准号: JS053) 资助的课题.

摘要: 本文运用含时密度泛函理论和分子动力学非绝热耦合的方法, 研究了水分子在不同极化方向的激光场中的电离和动力学行为. 计算结果表明, 对应相同的极化方向, 随着激光强度的增加, 水分子的电离增强; 对于相同强度的激光, 当激光极化方向沿水分子对称轴方向时, 水分子的电离最强, 当激光极化方向垂直水分子对称轴方向时, 水分子电离受到最大程度的抑制. 对水分子偶极矩的研究表明, 当分子处于线性响应区域时, x方向的激光只能激发起x方向的偶极振动而y方向的激光只能激发起y方向的偶极振动. 对水分子的键长和键角的研究表明, 在激光场中水分子的键长变长, 键角变大, 但变化幅度随着激光极化角的增大而减小. 此外, 研究还发现, 虽然在不同极化方向的激光脉冲的驱动下, 水分子OH键的振动频率与激光频率相当, 在脉冲关闭后, 振动频率减小, 但激光场的极化方向对水分子振动模式具有选择性.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回