搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Er3+掺杂玻璃腔内增强激光冷却理论分析

贾佑华 高勇 钟标 印建平

Er3+掺杂玻璃腔内增强激光冷却理论分析

贾佑华, 高勇, 钟标, 印建平
PDF
导出引用
  • 近年来,掺Er3+的CdF2-CdCl2-NaF-BaF2-BaCl2-ZnF2玻璃已成为固体材料激光冷却领域中新的研究材料之一. 本文利用激光器输出理论和驻波腔内共振增强原理分析了该材料的两种腔内增强激光的冷却,计算结果表明腔增强可获得几十到几百倍的增强因子. 此外,比较了内腔和外腔这两种增强方案,研究结果表明,当材料的吸收比较小时,特别是材料长度小于0.3 mm时,采用内腔增强方案,腔内抽运功率高,冷却材料对激光的吸收大. 然而当材料的吸收比较大时,特别是材料长度大于3 mm时,外腔增强方案更具优越性. 最后,根据Er3+掺杂材料制冷工作波长和功率的要求,指出腔增强实验可通过半导体激光器来实现.
    • 基金项目: 国家自然科学基金(批准号:10974055)、上海市教育委员会科研创新项目(批准号:12YZ177)和上海高校青年教师培养资助计划(批准号:egd11005)资助的课题.
    [1]

    Pringsheim P 1929 Z. Phys. 57 739

    [2]

    Epstein R I, Buchwald M I, Edwards B C 1995 Nature 377 500

    [3]

    Mungan C E, Buchwald M I, Edwards B C, Epstein R I, Gosnell T R 1997 Phys. Rev. Lett. 78 1030

    [4]

    Hoyt C W, Sheik-Bahae M, Epstein R I, Edwards B C, Anderson J E 2000 Phys. Rev. Lett. 85 3600

    [5]

    Hoyt C W, Hasselbeck M P, Sheik-Bahae M, Epstein R I 2003 J. Opt. Soc. Am. B 20 1066

    [6]

    Fernandez J, Mendioroz A, Garcia A J, Balda R, Adam J L, Arriandiaga M A 2001 Opt. Mater. 16 173

    [7]

    Fernandez J, Mendioroz A, Garcia A J, Balda R, Adam J L 2001 J. Alloys Compounds 323-324 239

    [8]

    Rayner A, Friese M E J, Truscott A G, Heckenberg N R, Rubinsztein-Dunlop H 2001 J. Mod. Opt. 48 103

    [9]

    Rayner A, Hirsch M, Heckenberg N R, Rubinsztein-Dunlop H 2001 Appl. Opt. 40 5423

    [10]

    Rayner A, Heckenberg N R, Dunlop H R 2003 J. Opt. Soc. Am. B 20 1037

    [11]

    Gosnell T R 1999 Opt. Lett. 24 1041

    [12]

    Lamouche G, Lavallard P, Suris R, Grousson R 1998 J. Appl. Phys. 84 509

    [13]

    Xiao S G, Yang X L, Ding J W 2009 Acta Phys. Sin. 58 3812 (in Chinese)[肖思国, 阳效良, 丁建文2009 物理学报 58 3812]

    [14]

    Wang Y L, Wang X L, Liang W H, Guo J X, Ding X C, Chu L Z, Deng Z C, Fu G S 2011 Acta Phys. Sin. 60 127302 (in Chinese)[王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生2011 物理学报60 127302]

    [15]

    Fernandez J, Garcia-Adeva J A, Balda R 2012 Optical Materials 34 579

    [16]

    Kim J, Kaviany M 2009 Appl. Phys Lett. 95 074103

    [17]

    Fernandez J, Garcia A J, Balda. R 2006 Phys. Rev. Lett. 97 033001

    [18]

    Heeg B, Rumbles G, Khizhnyak. A, Debarber P A 2002 J. Appl. Phys. 91 3356

    [19]

    Wu J, Wang C L, Lin J T 2003 Chin. Phys. 12 1120

    [20]

    Lozano B W, Araujo C B, Acioli L H, Messaddeq Y 1998 J. Appl. Phys. 84 2263

    [21]

    Youhua J, Biao Z, Jianping Y 2008 Chin. Phys. Lett. 25 85

    [22]

    Cao W Y, He Y F, Chen Z, Yang W, Du W M, Hu X D 2013 Chin. Phys. B 22 076803

    [23]

    Feng M X, Zhang S M, Jiang D S, Liu J P, Wang H, Zeng C, Li Z C, Wang H B, Wang F, Yang H 2012 Chin. Phys. B 21 084209

    [24]

    Garcia-Adeva A J, Balda R, Fernandez J 2007 Proc. of SPIE 6461 646102

    [25]

    Yen S T, Lee K C 2010 J. Appl. Phys. 107 054513

    [26]

    Kolar M, Klimovsky D G, Alicki R, Kurizki G 2012 Phys. Rev. Lett. 109 090601

    [27]

    Nemova G, Kasgyap R 2011 Phys. Rev. A 83 013404

  • [1]

    Pringsheim P 1929 Z. Phys. 57 739

    [2]

    Epstein R I, Buchwald M I, Edwards B C 1995 Nature 377 500

    [3]

    Mungan C E, Buchwald M I, Edwards B C, Epstein R I, Gosnell T R 1997 Phys. Rev. Lett. 78 1030

    [4]

    Hoyt C W, Sheik-Bahae M, Epstein R I, Edwards B C, Anderson J E 2000 Phys. Rev. Lett. 85 3600

    [5]

    Hoyt C W, Hasselbeck M P, Sheik-Bahae M, Epstein R I 2003 J. Opt. Soc. Am. B 20 1066

    [6]

    Fernandez J, Mendioroz A, Garcia A J, Balda R, Adam J L, Arriandiaga M A 2001 Opt. Mater. 16 173

    [7]

    Fernandez J, Mendioroz A, Garcia A J, Balda R, Adam J L 2001 J. Alloys Compounds 323-324 239

    [8]

    Rayner A, Friese M E J, Truscott A G, Heckenberg N R, Rubinsztein-Dunlop H 2001 J. Mod. Opt. 48 103

    [9]

    Rayner A, Hirsch M, Heckenberg N R, Rubinsztein-Dunlop H 2001 Appl. Opt. 40 5423

    [10]

    Rayner A, Heckenberg N R, Dunlop H R 2003 J. Opt. Soc. Am. B 20 1037

    [11]

    Gosnell T R 1999 Opt. Lett. 24 1041

    [12]

    Lamouche G, Lavallard P, Suris R, Grousson R 1998 J. Appl. Phys. 84 509

    [13]

    Xiao S G, Yang X L, Ding J W 2009 Acta Phys. Sin. 58 3812 (in Chinese)[肖思国, 阳效良, 丁建文2009 物理学报 58 3812]

    [14]

    Wang Y L, Wang X L, Liang W H, Guo J X, Ding X C, Chu L Z, Deng Z C, Fu G S 2011 Acta Phys. Sin. 60 127302 (in Chinese)[王英龙, 王秀丽, 梁伟华, 郭建新, 丁学成, 褚立志, 邓泽超, 傅广生2011 物理学报60 127302]

    [15]

    Fernandez J, Garcia-Adeva J A, Balda R 2012 Optical Materials 34 579

    [16]

    Kim J, Kaviany M 2009 Appl. Phys Lett. 95 074103

    [17]

    Fernandez J, Garcia A J, Balda. R 2006 Phys. Rev. Lett. 97 033001

    [18]

    Heeg B, Rumbles G, Khizhnyak. A, Debarber P A 2002 J. Appl. Phys. 91 3356

    [19]

    Wu J, Wang C L, Lin J T 2003 Chin. Phys. 12 1120

    [20]

    Lozano B W, Araujo C B, Acioli L H, Messaddeq Y 1998 J. Appl. Phys. 84 2263

    [21]

    Youhua J, Biao Z, Jianping Y 2008 Chin. Phys. Lett. 25 85

    [22]

    Cao W Y, He Y F, Chen Z, Yang W, Du W M, Hu X D 2013 Chin. Phys. B 22 076803

    [23]

    Feng M X, Zhang S M, Jiang D S, Liu J P, Wang H, Zeng C, Li Z C, Wang H B, Wang F, Yang H 2012 Chin. Phys. B 21 084209

    [24]

    Garcia-Adeva A J, Balda R, Fernandez J 2007 Proc. of SPIE 6461 646102

    [25]

    Yen S T, Lee K C 2010 J. Appl. Phys. 107 054513

    [26]

    Kolar M, Klimovsky D G, Alicki R, Kurizki G 2012 Phys. Rev. Lett. 109 090601

    [27]

    Nemova G, Kasgyap R 2011 Phys. Rev. A 83 013404

  • [1] 贾佑华, 钟标, 印建平. Tm3+ 掺杂ZrF4 -BaF2 -LaF3 -AlF3 -NaF-PbF2玻璃激光制冷中荧光再吸收效应的理论分析. 物理学报, 2011, 60(12): 124209. doi: 10.7498/aps.60.124209
    [2] 张 龙, 张军杰, 祁长鸿, 林凤英, 胡和方. 稀土离子掺杂的AlF3基氟化物玻璃. 物理学报, 2000, 49(8): 1620-1626. doi: 10.7498/aps.49.1620
    [3] 秦伟平, 秦冠仕, 张继森, 吴长锋, 王继伟, 杜国同. 单分子-光子制冷泵的热力学行为. 物理学报, 2001, 50(8): 1467-1474. doi: 10.7498/aps.50.1467
    [4] 贾佑华, 纪宪明, 印建平. 影响固体材料激光冷却若干因素的研究. 物理学报, 2007, 56(3): 1770-1774. doi: 10.7498/aps.56.1770
    [5] 林良书, 薛燕陵, 蒋器成, 张晓敏, 吴 鹏, 刘月明. Er3+在二氧化硅介孔分子筛中的高效率发光及其分析. 物理学报, 2008, 57(9): 5989-5995. doi: 10.7498/aps.57.5989
    [6] 孙家跃, 曹纯, 杜海燕. NaLa(MoO4)2∶Eu3+的水热调控合成与发光特性研究. 物理学报, 2011, 60(12): 127801. doi: 10.7498/aps.60.127801
    [7] 刘恒, 张钧翔, 付士杰, 盛泉, 史伟, 姚建铨. 有源光纤中稀土离子激光上能级寿命测量的研究. 物理学报, 2019, 68(22): 224202. doi: 10.7498/aps.68.20190616
    [8] 张卫平, 谭维翰. 激光腔内压缩态光的产生. 物理学报, 1988, 37(11): 1767-1774. doi: 10.7498/aps.37.1767
    [9] 叶碧青, 马忠林. 激光谐振腔内光学元件的热光效应. 物理学报, 1980, 29(6): 756-763. doi: 10.7498/aps.29.756
    [10] 韩海年, 张金伟, 张青, 张龙, 魏志义. 飞秒激光共振增强腔的理论与实验研究. 物理学报, 2012, 61(16): 164206. doi: 10.7498/aps.61.164206
    [11] 孙海生, 贾佑华, 纪宪明, 印建平. Tm3+掺杂光纤激光制冷的理论分析. 物理学报, 2006, 55(6): 3112-3118. doi: 10.7498/aps.55.3112
    [12] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究. 物理学报, 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [13] 张思远. 晶体中稀土离子能级重心的位移. 物理学报, 1987, 36(7): 1093-1098. doi: 10.7498/aps.36.1093
    [14] 张思远. 晶体中稀土离子能级重心的位移. 物理学报, 1987, 36(8): 1093-1098. doi: 10.7498/aps.36.1093
    [15] 耿爱丛, 薄 勇, 毕 勇, 孙志培, 杨晓冬, 鲁远甫, 陈亚辉, 郭 林, 王桂玲, 崔大复, 许祖彦. V型腔腔内和频产生3 W连续波589 nm黄光激光器. 物理学报, 2006, 55(10): 5227-5231. doi: 10.7498/aps.55.5227
    [16] 刘扬, 潘登, 陈文, 王文强, 沈昊, 徐红星. 纳米光学辐射传热: 从热辐射增强理论到辐射制冷应用. 物理学报, 2020, 69(3): 036501. doi: 10.7498/aps.69.20191906
    [17] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应. 物理学报, 2019, 68(23): 237801. doi: 10.7498/aps.68.20191121
    [18] 鲁远甫, 谢仕永, 薄勇, 崔前进, 宗楠, 高宏伟, 彭钦军, 崔大复, 许祖彦. 高功率准连续波腔内和频全固态黄光激光器. 物理学报, 2009, 58(2): 970-974. doi: 10.7498/aps.58.970
    [19] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器. 物理学报, 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [20] 张春平, 张光寅, 刘治国, 巴恩旭, 吕可诚. 多横模内腔He—Ne激光器的特殊偏振现象. 物理学报, 1982, 31(11): 1541-1546. doi: 10.7498/aps.31.1541
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1067
  • PDF下载量:  492
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-27
  • 修回日期:  2014-01-01
  • 刊出日期:  2014-04-05

Er3+掺杂玻璃腔内增强激光冷却理论分析

  • 1. 上海第二工业大学理学院, 上海 201209;
  • 2. 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
    基金项目: 

    国家自然科学基金(批准号:10974055)、上海市教育委员会科研创新项目(批准号:12YZ177)和上海高校青年教师培养资助计划(批准号:egd11005)资助的课题.

摘要: 近年来,掺Er3+的CdF2-CdCl2-NaF-BaF2-BaCl2-ZnF2玻璃已成为固体材料激光冷却领域中新的研究材料之一. 本文利用激光器输出理论和驻波腔内共振增强原理分析了该材料的两种腔内增强激光的冷却,计算结果表明腔增强可获得几十到几百倍的增强因子. 此外,比较了内腔和外腔这两种增强方案,研究结果表明,当材料的吸收比较小时,特别是材料长度小于0.3 mm时,采用内腔增强方案,腔内抽运功率高,冷却材料对激光的吸收大. 然而当材料的吸收比较大时,特别是材料长度大于3 mm时,外腔增强方案更具优越性. 最后,根据Er3+掺杂材料制冷工作波长和功率的要求,指出腔增强实验可通过半导体激光器来实现.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回