搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种具有吸波和相位相消特性的共享孔径雷达吸波材料

李文强 高军 曹祥玉 杨群 赵一 张昭 张呈辉

引用本文:
Citation:

一种具有吸波和相位相消特性的共享孔径雷达吸波材料

李文强, 高军, 曹祥玉, 杨群, 赵一, 张昭, 张呈辉

A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics

Li Wen-Qiang, Gao Jun, Cao Xiang-Yu, Yang Qun, Zhao Yi, Zhang Zhao, Zhang Cheng-Hui
PDF
导出引用
  • 提出了共享孔径雷达吸波材料(shared aperture radar absorbing material,SA-RAM)的设计方法. 该方法将无源人工电磁媒质(metamaterials,MTM)的散射问题等效为有源阵列的辐射问题进行研究,利用阵列天线原理对有限周期MTM单元构成的MTM子孔径的位置信息、幅度信息、相位信息进行优化设计,实现具有不同功能的SA-RAM. 在此基础上,设计了一种基于人工磁导体(artificial magnetic conductor,AMC)子孔径和完美吸波体(perfect metamaterial absorber,PMA)子孔径的SA-RAM,该SA-RAM通过将AMC子孔径与PMA子孔径交错布阵,实现了具有吸波和相位相消特性的SA-RAM. 仿真和实验结果表明,该SA-RAM较金属板的后向雷达散射截面(radar cross section,RCS)在5.5–8.3 GHz都有明显的减缩,在5.54 GHz处的减缩是由于PMA的高吸波率引起的,在7.0 GHz处的减缩是由于AMC子孔径和PMA子孔径相位相消引起的. 研究结果对频域和空域隐身相结合的雷达吸波材料设计具有重要的指导意义.
    A method of designing a kind of shared aperture radar absorbing material (SA-RAM) is presented, in which method the scattering problem of passive metamaterial (MTM) is converted into the radiation problem of active array. Multifunctional SA-RAM is realized by optimizing the position, amplitude, and phase of the MTM subarray composed of finite MTM structures based on the array theory. An SA-RAM with absorber and phase cancellation characteristics is fulfilled by interleaving artificial magnetic conductor (AMC) subarray and perfect metamaterial absorber (PMA) subarray. Simulation and experimental results demonstrate that the backscattering radar cross section (RCS) of SA-RAM is smaller than that of the metal plate in a frequency range of 5.5-8.3 GHz. Especially, the RCS reduction is caused by high absorbance at 5.54 GHz and by phase cancellation between AMC subarray and PMA subarray at 7.0 GHz. The idea can help to design radar absorbing material, which combines frequency stealth with space stealth function.
    • 基金项目: 国家自然科学基金(批准号:60671001,61271100)、陕西省自然科学基础研究重点项目(批准号:2010JZ010)、中国博士后科学基金(批准号:2012T50878)和陕西省自然科学基础研究项目(批准号:SJ08-ZT06,2012JM8003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60671001, 61271100), the Key Program of the Natural Science Basic Research of Shaanxi Province, China (Grant No. 2010JZ010), the China Postdoctoral Science Foundation (Grant No. 2012T50878), and the Natural Science Basic Research of Shanxi Province, China (Grant Nos. SJ08-ZT06, 2012JM8003).
    [1]

    Ronald L F, Michael T M 1988 IEEE Trans. Antennas Propag. 36 1443

    [2]

    Sievenpiper D, Zhang L J, Broas R F J, Alexópolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059

    [3]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [5]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [6]

    Gao Q, Yin Y, Yan D B 2005 Electron. Lett. 41 3

    [7]

    Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. Wirel. Propag. Lett. 7 473

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101

    [10]

    Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801

    [11]

    Li H, Dibakar R C, Suchitra R, Matthew T R 2012 Appl. Phys. Lett. 101 101102

    [12]

    Cheng Y Z, Nie Y, Gong R Z 2013 Appl. Phys. B 111 483

    [13]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479

    [14]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [15]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photonic Tech. Lett. 26 111

    [16]

    Paquay M, Iriarte J C, Ederra I 2007 IEEE Trans. Antennas Propag. 55 3630

    [17]

    Simms S, Fusco V 2008 Electron. Lett. 44 316

    [18]

    Zhang Y, Mittra R, Wang B Z, Huang N T 2009 Electron. Lett. 45 484

    [19]

    Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Technol. Lett. 53 712

    [20]

    Yao X, Cao X Y, Gao J, Yang Q 2012 Prog. Electromag. Res. Lett. 32 11

    [21]

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese)[鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 物理学报 62 034206]

    [22]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese)[赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]

    [23]

    Edalati A, Sarabandi K 2014 IEEE Trans. Antennas Propag. 62 747

    [24]

    Hwang R B, Tsai Y L 2012 AIP Advances 2 012128

    [25]

    Axness T A, Coffman R V, Kopp B A, O'Hare K W 1996 Johns Hopkins APL Technical Digest 17 285

    [26]

    Fourikis N 2000 Advanced Array Systems, Applications and RF Technologies (California: A Harcourt Science and Technology Company) p111

    [27]

    Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391

    [28]

    Mauricio S B, Jackson R W, Frasier S 2012 IEEE Trans. Geosci. Remote 50 1283

    [29]

    Zhong S H, Sun Z, Kong L B 2012 IEEE Trans. Antennas Propag. 60 4157

    [30]

    Naishadham K, Li R L, Yang L 2013 IEEE Trans. Antennas Propag. 61 606

    [31]

    Smith T, Gothelf U, Kim O S, Breinbjerg O 2014 IEEE Trans. Antennas Propag. 62 661

    [32]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [33]

    Szabo Z, Park G H, Hedge R 2010 IEEE Trans. Microw. Theory Tech. 58 2646

    [34]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [35]

    He X J, Wang Y, Wang J M, Gui T L 2011 Prog. Electromag. Res. 115 381

  • [1]

    Ronald L F, Michael T M 1988 IEEE Trans. Antennas Propag. 36 1443

    [2]

    Sievenpiper D, Zhang L J, Broas R F J, Alexópolous N G, Yablonovitch E 1999 IEEE Trans. Microw. Theory Tech. 47 2059

    [3]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [4]

    Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534

    [5]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780

    [6]

    Gao Q, Yin Y, Yan D B 2005 Electron. Lett. 41 3

    [7]

    Li Y Q, Zhang H, Fu Y Q, Yuan N C 2008 IEEE Anten. Wirel. Propag. Lett. 7 473

    [8]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [9]

    Marcus D, Thomas K, Soukoulis C M 2009 Phys. Rev. B 79 033101

    [10]

    Huang Y J, Wen G J, Li J, Zhong J P, Wang P, Sun Y H, Gordon O, Zhu W R 2012 Chin. Phys. B 21 117801

    [11]

    Li H, Dibakar R C, Suchitra R, Matthew T R 2012 Appl. Phys. Lett. 101 101102

    [12]

    Cheng Y Z, Nie Y, Gong R Z 2013 Appl. Phys. B 111 483

    [13]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479

    [14]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [15]

    Wang B X, Wang L L, Wang G Z, Huang W Q, Li X F, Zhai X 2014 IEEE Photonic Tech. Lett. 26 111

    [16]

    Paquay M, Iriarte J C, Ederra I 2007 IEEE Trans. Antennas Propag. 55 3630

    [17]

    Simms S, Fusco V 2008 Electron. Lett. 44 316

    [18]

    Zhang Y, Mittra R, Wang B Z, Huang N T 2009 Electron. Lett. 45 484

    [19]

    Fu Y Q, Li Y Q, Yuan N C 2011 Microw. Opt. Technol. Lett. 53 712

    [20]

    Yao X, Cao X Y, Gao J, Yang Q 2012 Prog. Electromag. Res. Lett. 32 11

    [21]

    Lu L, Qu S B, Ma H, Xia S, Xu Z, Wang J F, Yu F 2013 Acta Phys. Sin. 62 034206 (in Chinese)[鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐 2013 物理学报 62 034206]

    [22]

    Zhao Y, Cao X Y, Gao J, Yao X, Ma J J, Li S J, Yang H H 2013 Acta Phys. Sin. 62 154204 (in Chinese)[赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢 2013 物理学报 62 154204]

    [23]

    Edalati A, Sarabandi K 2014 IEEE Trans. Antennas Propag. 62 747

    [24]

    Hwang R B, Tsai Y L 2012 AIP Advances 2 012128

    [25]

    Axness T A, Coffman R V, Kopp B A, O'Hare K W 1996 Johns Hopkins APL Technical Digest 17 285

    [26]

    Fourikis N 2000 Advanced Array Systems, Applications and RF Technologies (California: A Harcourt Science and Technology Company) p111

    [27]

    Chu Q X, Ma H Q, Zheng H L 2008 IEEE Trans. Antennas Propag. 56 3391

    [28]

    Mauricio S B, Jackson R W, Frasier S 2012 IEEE Trans. Geosci. Remote 50 1283

    [29]

    Zhong S H, Sun Z, Kong L B 2012 IEEE Trans. Antennas Propag. 60 4157

    [30]

    Naishadham K, Li R L, Yang L 2013 IEEE Trans. Antennas Propag. 61 606

    [31]

    Smith T, Gothelf U, Kim O S, Breinbjerg O 2014 IEEE Trans. Antennas Propag. 62 661

    [32]

    Smith D R, Vier D C, Koschny T, Soukoulis C M 2005 Phys. Rev. E 71 036617

    [33]

    Szabo Z, Park G H, Hedge R 2010 IEEE Trans. Microw. Theory Tech. 58 2646

    [34]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

    [35]

    He X J, Wang Y, Wang J M, Gui T L 2011 Prog. Electromag. Res. 115 381

  • [1] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [2] 丛丽丽, 付强, 曹祥玉, 高军, 宋涛, 李文强, 赵一, 郑月军. 一种高增益低雷达散射截面的新型圆极化微带天线设计. 物理学报, 2015, 64(22): 224219. doi: 10.7498/aps.64.224219
    [3] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [4] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [5] 李文强, 曹祥玉, 高军, 郑月军, 杨欢欢, 李思佳, 赵一. 共享孔径人工电磁媒质设计及其在高增益低雷达散射截面天线中的应用. 物理学报, 2015, 64(5): 054101. doi: 10.7498/aps.64.054101
    [6] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [7] 郑月军, 高军, 曹祥玉, 李思佳, 杨欢欢, 李文强, 赵一, 刘红喜. 覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏. 物理学报, 2015, 64(2): 024219. doi: 10.7498/aps.64.024219
    [8] 朱艳菊, 江月松, 华厚强, 张崇辉, 辛灿伟. 热防护层覆盖弹体目标雷达散射截面的修正的等效电流近似法和图形计算电磁学法分析. 物理学报, 2014, 63(24): 244101. doi: 10.7498/aps.63.244101
    [9] 何晶, 苗强, 吴德伟. 微波-光波变电长度缩比条件下目标雷达散射截面相似性研究. 物理学报, 2014, 63(20): 200301. doi: 10.7498/aps.63.200301
    [10] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [12] 李思佳, 曹祥玉, 高军, 郑秋容, 杨群, 张昭, 张焕梅. 高Q值超薄完美吸波体设计方法研究. 物理学报, 2013, 62(24): 244101. doi: 10.7498/aps.62.244101
    [13] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [14] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [15] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [16] 鲁磊, 屈绍波, 马华, 夏颂, 徐卓, 王甲富, 余斐. 宽带雷达散射截面减缩人工磁导体复合结构. 物理学报, 2013, 62(3): 034206. doi: 10.7498/aps.62.034206
    [17] 赵一, 曹祥玉, 高军, 姚旭, 马嘉俊, 李思佳, 杨欢欢. 人工磁导体正交布阵的宽带低雷达截面反射屏. 物理学报, 2013, 62(15): 154204. doi: 10.7498/aps.62.154204
    [18] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [19] 李民权, 陶小俊, 赵 瑾, 吴先良. 基于辛Runge-Kutta-Nystrom方法的雷达散射截面计算. 物理学报, 2007, 56(4): 2115-2118. doi: 10.7498/aps.56.2115
    [20] 刘少斌, 张光甫, 袁乃昌. 等离子体覆盖立方散射体目标雷达散射截面的时域有限差分法分析. 物理学报, 2004, 53(8): 2633-2637. doi: 10.7498/aps.53.2633
计量
  • 文章访问数:  5514
  • PDF下载量:  963
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-08
  • 修回日期:  2014-03-04
  • 刊出日期:  2014-06-05

/

返回文章
返回