搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构

陈冉 刘阿娣 邵林明 胡广海 金晓丽

使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构

陈冉, 刘阿娣, 邵林明, 胡广海, 金晓丽
PDF
导出引用
导出核心图
  • 对等离子体湍流速度场的有效探测,有助于更加深入了解磁约束等离子体湍流以及实现对某些理论预言现象和结构(如带状流)的充分辨识. 本文将基于动态程序规划的时间延迟估算技术成功应用于直线磁化等离子体装置中热 阴极放电条件下的漂移波湍流角向速度涨落的实验分析,并且其结果清晰再现了漂移波湍流中通过非线性能量耦合自发产生的带状流结构. 通过对采用不同频段等离子体湍流涨落通过基于动态程序规划的时间延迟估算分析所再现的带状流结构特征进行比较,进一步就该算法对载波信号中非相干噪声相对水平的抗干扰能力进行了定性评估. 这些工作的成功开展,对于通过采用基于动态程序规划的时间延迟估算分析技术更为深入有效探索磁约束等离子体湍流行为特征,尤其是速度涨落场的演化提供了重要的借鉴和参考 价值.
    • 基金项目: 国家自然科学基金(批准号:11205193)和高等学校博士学科点新教师类基金(批准号:20113402120023)资助的课题.
    [1]

    McKee G R, Fonck R J, Gupta D K, Schlossberg D J, Shafer M W, Holland C, Tynan G 2004 Rev. Sci. Instrum. 75 3490

    [2]

    Holland C, Tynan G R, McKee G R, Fonck R J 2004 Rev. Sci. Instrum. 75 4278

    [3]

    Jakubowski M, Fonck R J, Fenzi C, McKee G R 2001 Rev. Sci. Instrum. 72 996

    [4]

    Schlossberg D J, Gupta D K, Fonck R J, McKee G R, Shafer M W 2006 Rev. Sci. Instrum. 77 10F518

    [5]

    Gupta D K, McKee G R, Fonck R J 2010 Rev. Sci. Instrum. 81 013501

    [6]

    Shao L M, Xu G S, Liu S C, Zweben S J, Wan B N, Guo H Y, Liu A D, Chen R, Cao B, Zhang W, Wang H Q, Wang L, Ding S Y, Yan N, Hu G H, Xiong H, Chen L, Liu Y L, Zhao N, Li Y L 2013 Plasma Phys. Control. Fusion 55 105006

    [7]

    Hasegawa A, Maclennan C G, Kodama Y 1979 Phys. Fluids 22 2122

    [8]

    Zhang Y Z, Xie T 2014 Acta Phys. Sin. 63 035202(in Chinese)[章扬忠, 谢涛 2014 物理学报 63 035202]

    [9]

    Peng X D, Yin S Q 2004 Acta Phys. Sin. 53 3094(in Chinese)[彭晓东, 尹绍全 2004 物理学报 53 3094]

    [10]

    Winsor N, Johnson J L, Dawson J M 1968 Phys. Fluids 11 2448

    [11]

    Rosenbluth M N, Hinton F L 1998 Phys. Rev. Lett. 80 724

    [12]

    Fujisawa A 2009 Nucl. Fusion 49 013001

    [13]

    Lin Z, Hahm T S, Lee W W, Tang W M, White R B 1998 Science 281 1835

    [14]

    Kim E J, Diamond P H 2003 Phys. Rev. Lett. 90 185006

    [15]

    Xie J L, Yu Z, Liu W D, Yu C X 2006 Plasma Sci. Technol. 8 99

    [16]

    Chen R, Xie J L, Yu C X, Liu A D, Lan T, Zhang S B, Hu G H, Li H, Liu W D 2011 Chin. Phys. Lett. 28 025202

    [17]

    Gao F, Li X C, Zhao S X, Wang Y N 2012 Chin. Phys. B 21 075203

    [18]

    Wu J, Zhang P Y, Sun J Z, Zhang J, Ding Z F, Wang D Z 2008 Chin. Phys. B 17 1848

    [19]

    Xu X, Li L S, Liu F, Zhou Q H, Liang R Q 2008 Chin. Phys. B 17 4242

    [20]

    Hong W Y, Yan L W, Zhao K J, Lan T, Dong J Q, Yu C X, Cheng J, Qian J, Liu A D, Luo C W, Xu Z Y, Huang Y, Yang Q W 2008 Acta Phys. Sin. 57 962(in Chinese)[洪文玉, 严龙文, 赵开君, 兰涛, 董家齐, 俞昌旋, 程均, 钱俊, 刘阿棣, 罗萃文, 徐征宇, 黄渊, 杨青巍 2008 物理学报 57 962]

    [21]

    Xu G S, Wan B N, Song M, Li J 2003 Phys. Rev. Lett. 91 125001

    [22]

    Quénot G M, Pakleza J, Kowalewski T A 1998 Exp. Fluids 25 177

    [23]

    Kim Y C, Powers E J 1979 IEEE Trans. Plasma Sci. 7 120

    [24]

    Kim Y C, Beall J M, Powers E J, Miksad R W 1980 Phys. Fluids 23 258

    [25]

    Itoh K, Nagashima Y, Itoh S -I, Diamond P H, Fujisawa A, Yagi M, Fukuyama A 2005 Phys. Plasmas 12 102301

    [26]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35

  • [1]

    McKee G R, Fonck R J, Gupta D K, Schlossberg D J, Shafer M W, Holland C, Tynan G 2004 Rev. Sci. Instrum. 75 3490

    [2]

    Holland C, Tynan G R, McKee G R, Fonck R J 2004 Rev. Sci. Instrum. 75 4278

    [3]

    Jakubowski M, Fonck R J, Fenzi C, McKee G R 2001 Rev. Sci. Instrum. 72 996

    [4]

    Schlossberg D J, Gupta D K, Fonck R J, McKee G R, Shafer M W 2006 Rev. Sci. Instrum. 77 10F518

    [5]

    Gupta D K, McKee G R, Fonck R J 2010 Rev. Sci. Instrum. 81 013501

    [6]

    Shao L M, Xu G S, Liu S C, Zweben S J, Wan B N, Guo H Y, Liu A D, Chen R, Cao B, Zhang W, Wang H Q, Wang L, Ding S Y, Yan N, Hu G H, Xiong H, Chen L, Liu Y L, Zhao N, Li Y L 2013 Plasma Phys. Control. Fusion 55 105006

    [7]

    Hasegawa A, Maclennan C G, Kodama Y 1979 Phys. Fluids 22 2122

    [8]

    Zhang Y Z, Xie T 2014 Acta Phys. Sin. 63 035202(in Chinese)[章扬忠, 谢涛 2014 物理学报 63 035202]

    [9]

    Peng X D, Yin S Q 2004 Acta Phys. Sin. 53 3094(in Chinese)[彭晓东, 尹绍全 2004 物理学报 53 3094]

    [10]

    Winsor N, Johnson J L, Dawson J M 1968 Phys. Fluids 11 2448

    [11]

    Rosenbluth M N, Hinton F L 1998 Phys. Rev. Lett. 80 724

    [12]

    Fujisawa A 2009 Nucl. Fusion 49 013001

    [13]

    Lin Z, Hahm T S, Lee W W, Tang W M, White R B 1998 Science 281 1835

    [14]

    Kim E J, Diamond P H 2003 Phys. Rev. Lett. 90 185006

    [15]

    Xie J L, Yu Z, Liu W D, Yu C X 2006 Plasma Sci. Technol. 8 99

    [16]

    Chen R, Xie J L, Yu C X, Liu A D, Lan T, Zhang S B, Hu G H, Li H, Liu W D 2011 Chin. Phys. Lett. 28 025202

    [17]

    Gao F, Li X C, Zhao S X, Wang Y N 2012 Chin. Phys. B 21 075203

    [18]

    Wu J, Zhang P Y, Sun J Z, Zhang J, Ding Z F, Wang D Z 2008 Chin. Phys. B 17 1848

    [19]

    Xu X, Li L S, Liu F, Zhou Q H, Liang R Q 2008 Chin. Phys. B 17 4242

    [20]

    Hong W Y, Yan L W, Zhao K J, Lan T, Dong J Q, Yu C X, Cheng J, Qian J, Liu A D, Luo C W, Xu Z Y, Huang Y, Yang Q W 2008 Acta Phys. Sin. 57 962(in Chinese)[洪文玉, 严龙文, 赵开君, 兰涛, 董家齐, 俞昌旋, 程均, 钱俊, 刘阿棣, 罗萃文, 徐征宇, 黄渊, 杨青巍 2008 物理学报 57 962]

    [21]

    Xu G S, Wan B N, Song M, Li J 2003 Phys. Rev. Lett. 91 125001

    [22]

    Quénot G M, Pakleza J, Kowalewski T A 1998 Exp. Fluids 25 177

    [23]

    Kim Y C, Powers E J 1979 IEEE Trans. Plasma Sci. 7 120

    [24]

    Kim Y C, Beall J M, Powers E J, Miksad R W 1980 Phys. Fluids 23 258

    [25]

    Itoh K, Nagashima Y, Itoh S -I, Diamond P H, Fujisawa A, Yagi M, Fukuyama A 2005 Phys. Plasmas 12 102301

    [26]

    Diamond P H, Itoh S I, Itoh K, Hahm T S 2005 Plasma Phys. Control. Fusion 47 R35

  • [1] 陆赫林, 王顺金. 离子温度梯度模湍流的带状流最小自由度模型. 物理学报, 2009, 58(1): 354-362. doi: 10.7498/aps.58.354
    [2] 彭晓东, 邱孝明, 陆赫林, 王顺金. 逆磁效应对交换模湍流产生的带状流的影响. 物理学报, 2009, 58(9): 6387-6391. doi: 10.7498/aps.58.6387
    [3] 洪文玉, 严龙文, 赵开君, 董家齐, 程 均, 钱 俊, 罗萃文, 徐征宇, 黄 渊, 杨青巍, 兰 涛, 俞昌旋, 刘阿棣. HL-2A装置中的带状流三维特性研究和探针设计. 物理学报, 2008, 57(2): 962-968. doi: 10.7498/aps.57.962
    [4] 陆赫林, 李跃勋, 杨恺, 陈忠勇. 磁场剪切对离子温度梯度模带状流产生的影响. 物理学报, 2011, 60(8): 085202. doi: 10.7498/aps.60.085202
    [5] 张宇, 管玉平, 陈朝晖, 刘海龙, 黄瑞新. 不同滤波方法对揭示全球海洋条带结构的比较. 物理学报, 2015, 64(14): 149201. doi: 10.7498/aps.64.149201
    [6] 邱孝明. 漂移波湍流中“clumps”理论. 物理学报, 1983, 32(8): 1027-1034. doi: 10.7498/aps.32.1027
    [7] 阮存军, 罗积润, 阮望, 赵鼎, 张小锋. 带状注速调管注波互作用及其计算程序的研究. 物理学报, 2011, 60(6): 068402. doi: 10.7498/aps.60.068402
    [8] 霍裕平. 化学反应体系中涨落的时间空间关联(Ⅰ)——涨落、扩散和波. 物理学报, 1982, 31(3): 355-368. doi: 10.7498/aps.31.355
    [9] 姚天亮, 刘海峰, 许建良, 李伟锋. 空气湍射流速度时间序列的最大Lyapunov指数以及湍流脉动. 物理学报, 2012, 61(23): 234704. doi: 10.7498/aps.61.234704
    [10] 章扬忠, 谢涛. 轴对称环状静电模的漂移波湍流参量激发理论研究. 物理学报, 2014, 63(3): 035202. doi: 10.7498/aps.63.035202
    [11] 贺凯芬, 胡岗. 微扰法解由正弦波驱动的非线性漂移波的分岔. 物理学报, 1991, 40(12): 1948-1954. doi: 10.7498/aps.40.1948
    [12] 张希清, 赵家龙, 秦伟平, 窦凯, 黄世华. 用非相干光时间延迟四波混频测量二极扩散系数. 物理学报, 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
    [13] 杜广星, 钱宝良. 准矩形截面强流相对论带状电子束的传输. 物理学报, 2010, 59(7): 4626-4633. doi: 10.7498/aps.59.4626
    [14] 李明飞, 阎璐, 杨然, 寇军, 刘院省. 日光强度涨落自关联消湍流成像. 物理学报, 2019, 68(9): 094204. doi: 10.7498/aps.68.20182181
    [15] 鲍德松, 张训生, 徐光磊, 潘正权, 唐孝威, 陆坤权. 平面颗粒流的瓶颈效应及其与速度的关系. 物理学报, 2003, 52(2): 401-404. doi: 10.7498/aps.52.401
    [16] 于文婷, 张娟, 唐军. 动态突触、神经耦合与时间延迟对神经元发放的影响. 物理学报, 2017, 66(20): 200201. doi: 10.7498/aps.66.200201
    [17] 黄德财, 孙 刚, 厚美瑛, 陆坤权. 颗粒速度在颗粒流稀疏流-密集流转变中的作用. 物理学报, 2006, 55(9): 4754-4759. doi: 10.7498/aps.55.4754
    [18] 董家齐, 傅新宇, 应纯同, 刘广均. 平行速度剪切驱动湍流引起的粒子输运. 物理学报, 1997, 46(3): 474-480. doi: 10.7498/aps.46.474
    [19] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [20] 俞阿龙. 基于小波神经网络的振动速度传感器幅频特性补偿研究. 物理学报, 2007, 56(6): 3166-3171. doi: 10.7498/aps.56.3166
  • 引用本文:
    Citation:
计量
  • 文章访问数:  646
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-02
  • 修回日期:  2014-05-12
  • 刊出日期:  2014-09-05

使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构

  • 1. 中国科学技术大学近代物理系, 中国科学院地球空间环境重点实验室, 合肥 230026;
  • 2. 中国科学院合肥物质科学研究院等离子体物理研究所, 合肥 230031
    基金项目: 

    国家自然科学基金(批准号:11205193)和高等学校博士学科点新教师类基金(批准号:20113402120023)资助的课题.

摘要: 对等离子体湍流速度场的有效探测,有助于更加深入了解磁约束等离子体湍流以及实现对某些理论预言现象和结构(如带状流)的充分辨识. 本文将基于动态程序规划的时间延迟估算技术成功应用于直线磁化等离子体装置中热 阴极放电条件下的漂移波湍流角向速度涨落的实验分析,并且其结果清晰再现了漂移波湍流中通过非线性能量耦合自发产生的带状流结构. 通过对采用不同频段等离子体湍流涨落通过基于动态程序规划的时间延迟估算分析所再现的带状流结构特征进行比较,进一步就该算法对载波信号中非相干噪声相对水平的抗干扰能力进行了定性评估. 这些工作的成功开展,对于通过采用基于动态程序规划的时间延迟估算分析技术更为深入有效探索磁约束等离子体湍流行为特征,尤其是速度涨落场的演化提供了重要的借鉴和参考 价值.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回