搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多模式离子推力器栅极系统三维粒子模拟仿真

陈茂林 夏广庆 毛根旺

多模式离子推力器栅极系统三维粒子模拟仿真

陈茂林, 夏广庆, 毛根旺
PDF
导出引用
导出核心图
  • 栅极系统是离子推力器推力产生的主要部件,推力器的性能和寿命都与栅极系统密切相关. 对于具有多种工作模态的离子推力器,基于电流电压入口的仿真可以有效评估推力器的工作状况. 采用三维粒子模拟方法对两栅极系统等离子体输运过程进行了仿真,获得了不同模式下的推力器性能参数,对比NSTAR的在轨测试参数,验证了模型的正确性;分析了工作模式变化对栅极区域电场分布和束流状态的影响以及离子推力器多模式设计需求. 分析结果表明:远离栅极系统的外凸型屏栅鞘层和内凹型零等势面、低鞍点电势值和平缓的下游电势分布,有利于提高栅极系统离子通过率,抑制电子返流,减小Pits-and-Grooves腐蚀,是离子推力器工作模式的设计方向;提高束流电压会导致发散角损失增大,但可扩展栅极工作电流范围,在束流强度较大的模式下,使束流具有较好的聚焦状态,有利于减小Barrel腐蚀. 研究结果为多模式离子推力器工作模式设计提供了参考.
    • 基金项目: 国家自然科学基金(批准号:51276147,11105023,11275034)、中央高校基本科研业务费专项资金(批准号:3102014KYJD005)、西北工业大学基础研究基金(批准号:NPU-FFR-JC20120201)和工业装备结构分析国家重点实验室开放基金(批准号:GZ1101)资助的课题.
    [1]

    Sovey J S, Rawlin V K, Patterson M J 2001 J. Propuls. Power 17 517

    [2]

    Patterson M J, Sovey J S 2013 J. Aerospace Engineer. 26 300

    [3]

    Yamamoto N, Tomita K, Yamasaki N, Tsuru T, Ezaki T, Kotani Y, Uchino K, Nakashima H 2010 Plasma Sources Sci. Technol. 19 045009

    [4]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propuls. Power 19 1192

    [5]

    Whealton J H, Whitson J C 1980 Particle Accelerators 10 235

    [6]

    Wheelock A, Cooke D L, Gatsonis N A 2004 Comput. Phys. Commun. 164 336

    [7]

    Miyasaka T, Kobayashi T, Asato K 2010 Vacuum 85 585

    [8]

    Miyamoto K, Okuda S, Hatayama A, Hanada M, Kojima A 2013 AIP Conference Proceedings 1515 22

    [9]

    Miyamoto K, Okuda S, Hatayama A, Hanada M, Kojima A 2013 Appl. Phys. Lett. 102 023512

    [10]

    Zhong L W, Liu Y, Li J, Gu Z, Jiang H C, Wang H X, Tang H B 2010 Chin. J. Aeronaut. 23 15

    [11]

    Liu C, Tang H B, Gu Z, Jiang H C 2006 High Power Laser and Particle Beams 18 1193(in Chinese)[刘畅, 汤海滨, 顾佐, 江豪城 2006 强激光与粒子束 18 1193]

    [12]

    Du J 2009 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[杜军 2009 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [13]

    Sun A B 2010 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese)[孙安邦 2010 博士学位论文 (西安: 西北工业大学)]

    [14]

    Jia Y H, Li Z M, Zhang T P, Li J 2012 Chin. Space Sci. Technol. 32 72(in Chinese)[贾艳辉, 李忠明, 张天平, 李娟 2012 中国空间科学技术 32 72]

    [15]

    Wang H Y, Jiang W, Sun P, Kong L B 2014 Chin. Phys. B 23 035204

    [16]

    Hu W P, Sang C F, Tang T F, Wang D Z, Li M, Jin D Z, Tan X H 2014 Phys. Plasmas 21 033510

  • [1]

    Sovey J S, Rawlin V K, Patterson M J 2001 J. Propuls. Power 17 517

    [2]

    Patterson M J, Sovey J S 2013 J. Aerospace Engineer. 26 300

    [3]

    Yamamoto N, Tomita K, Yamasaki N, Tsuru T, Ezaki T, Kotani Y, Uchino K, Nakashima H 2010 Plasma Sources Sci. Technol. 19 045009

    [4]

    Wang J, Polk J, Brophy J, Katz I 2003 J. Propuls. Power 19 1192

    [5]

    Whealton J H, Whitson J C 1980 Particle Accelerators 10 235

    [6]

    Wheelock A, Cooke D L, Gatsonis N A 2004 Comput. Phys. Commun. 164 336

    [7]

    Miyasaka T, Kobayashi T, Asato K 2010 Vacuum 85 585

    [8]

    Miyamoto K, Okuda S, Hatayama A, Hanada M, Kojima A 2013 AIP Conference Proceedings 1515 22

    [9]

    Miyamoto K, Okuda S, Hatayama A, Hanada M, Kojima A 2013 Appl. Phys. Lett. 102 023512

    [10]

    Zhong L W, Liu Y, Li J, Gu Z, Jiang H C, Wang H X, Tang H B 2010 Chin. J. Aeronaut. 23 15

    [11]

    Liu C, Tang H B, Gu Z, Jiang H C 2006 High Power Laser and Particle Beams 18 1193(in Chinese)[刘畅, 汤海滨, 顾佐, 江豪城 2006 强激光与粒子束 18 1193]

    [12]

    Du J 2009 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese)[杜军 2009 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [13]

    Sun A B 2010 Ph. D. Dissertation (Xi'an: Northwestern Polytechnical University) (in Chinese)[孙安邦 2010 博士学位论文 (西安: 西北工业大学)]

    [14]

    Jia Y H, Li Z M, Zhang T P, Li J 2012 Chin. Space Sci. Technol. 32 72(in Chinese)[贾艳辉, 李忠明, 张天平, 李娟 2012 中国空间科学技术 32 72]

    [15]

    Wang H Y, Jiang W, Sun P, Kong L B 2014 Chin. Phys. B 23 035204

    [16]

    Hu W P, Sang C F, Tang T F, Wang D Z, Li M, Jin D Z, Tan X H 2014 Phys. Plasmas 21 033510

  • [1] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [2] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [3] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [4] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [5] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [6] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [7] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [8] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [9] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [10] 刘婉馨, 陈瑞, 刘永杰, 王俊峰, 韩小涛, 杨明. 脉冲强磁场下的电极化测量系统. 物理学报, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [11] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [12] 庄志本, 李军, 刘静漪, 陈世强. 基于新的五维多环多翼超混沌系统的图像加密算法. 物理学报, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [13] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [14] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [15] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [16] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [17] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [18] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200025
  • 引用本文:
    Citation:
计量
  • 文章访问数:  545
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-15
  • 修回日期:  2014-05-08
  • 刊出日期:  2014-09-20

多模式离子推力器栅极系统三维粒子模拟仿真

  • 1. 西北工业大学, 固体火箭发动机燃烧、热结构与内流场国防科技重点实验室, 西安 710072;
  • 2. 大连理工大学, 工业装备结构分析国家重点实验室, 大连 116024
    基金项目: 

    国家自然科学基金(批准号:51276147,11105023,11275034)、中央高校基本科研业务费专项资金(批准号:3102014KYJD005)、西北工业大学基础研究基金(批准号:NPU-FFR-JC20120201)和工业装备结构分析国家重点实验室开放基金(批准号:GZ1101)资助的课题.

摘要: 栅极系统是离子推力器推力产生的主要部件,推力器的性能和寿命都与栅极系统密切相关. 对于具有多种工作模态的离子推力器,基于电流电压入口的仿真可以有效评估推力器的工作状况. 采用三维粒子模拟方法对两栅极系统等离子体输运过程进行了仿真,获得了不同模式下的推力器性能参数,对比NSTAR的在轨测试参数,验证了模型的正确性;分析了工作模式变化对栅极区域电场分布和束流状态的影响以及离子推力器多模式设计需求. 分析结果表明:远离栅极系统的外凸型屏栅鞘层和内凹型零等势面、低鞍点电势值和平缓的下游电势分布,有利于提高栅极系统离子通过率,抑制电子返流,减小Pits-and-Grooves腐蚀,是离子推力器工作模式的设计方向;提高束流电压会导致发散角损失增大,但可扩展栅极工作电流范围,在束流强度较大的模式下,使束流具有较好的聚焦状态,有利于减小Barrel腐蚀. 研究结果为多模式离子推力器工作模式设计提供了参考.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回