搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响

杨帅 汤晓燕 张玉明 宋庆文 张义门

引用本文:
Citation:

电荷失配对SiC半超结垂直双扩散金属氧化物半导体场效应管击穿电压的影响

杨帅, 汤晓燕, 张玉明, 宋庆文, 张义门

Influence of charge imbalance on breakdown voltage of 4H-SiC semi-superjunction VDMOSFET

Yang Shuai, Tang Xiao-Yan, Zhang Yu-Ming, Song Qing-Wen, Zhang Yi-Men
PDF
导出引用
  • SiC半超结垂直双扩散金属氧化物半导体场效应管(VDMOSFET)相对于 常规VDMOSFET在相同导通电阻下具有更大击穿电压. 在N型外延层上进行离子注入形成半超结结构中的P柱是制造SiC半超结VDMOSFET 的关键工艺. 本文通过二维数值仿真研究了离子注入导致的电荷失配对4H-SiC超结和半超结VDMOSFET 击穿电压的影响,在电荷失配程度为30%时出现半超结VDMOSFET的最大击穿电压. 在本文的器件参数下,P柱浓度偏差导致击穿电压降低15%时,半超结VDMOSFET柱区浓度偏差范围相对于超结VDMOSFET可提高69.5%,这意味着半超结VDMOSFET对柱区离子注入的控制要求更低,工艺制造难度更低.
    SiC semi-superjunction vertical double diffused MOS (VDMOSFET) has higher breakdown voltage than conventional SiC VDMOSFET with the same on-resistance. The ion implantation to form p pillar region on N-type epilayer is a key process to form semi-superjunction stucture. The influences of charge imbalance induced by ion implantation on breakdown voltages of 4H-SiC superjunction and semi-superjunction VDMOSFET are investigated through two-dimensional numerical simulation, and the largest breakdown voltage is obtained when charge imbalance is 30%. With the same structure parameters of devices, when breakdown voltage decreases by 15% due to the deviation of doping concentration in P pillars, the tolerance of doping concentration for the semi-superjunction VDMOSFET is 69.5% higher than for superjunction VDMOSFET which means that less precise process control of ion implantation for semi-superjunction VDMOSFET, will be required with less difficulty in the manufacture of pillars.
    • 基金项目: 国家自然科学基金(批准号:61274079,61176070)、陕西省自然科学基金(批准号:2013JQ8012)、高等学校博士学科点专项科研基金(批准号:20130203120017,20110203110010)和教育部重大专项(批准号:625010101)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274079, 61176070), the Natural Science Foundation of Shananxi, China (Grant No. 2013JQ8012), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20130203120017, 20110203110010), and the Key Specific Projects of Ministry of Education of China (Grant No. 625010101).
    [1]

    Xu J P, Li C X, Wu H P 2005 Acta Phys. Sin. 54 2918 (in Chinese) [徐静平, 李春霞, 吴海平 2005 物理学报 54 2918]

    [2]

    Singh R, Cooper Jr J A, Melloch M R, Chow T P, Palmour J W 2002 IEEE Trans. Electron Dev. 49 665

    [3]

    Casady J B, Agarwal A K, Rowland L B, Valek W F, Brandt C D 1997 Device Research Conference Digest Fort Collins, USA, June 23-25, 1997 p32

    [4]

    Yu L C, Sheng K 2006 Solid-State Electron 50 1062

    [5]

    Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C, Ren L L 2010 Acta Phys. Sin. 59 566 (in Chinese) [杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽 2010 物理学报 59 566]

    [6]

    Fujihira T 1997 Jpn. J. Appl. Phys. 36 6254

    [7]

    Cao L, Pu H B, Chen Z M, Zang Y 2012 Chin. Phys. B 21 017303

    [8]

    Saito W, Omura I, Aida S, Koduki S, Izumisawa M, Ogura T 2003 Proceedings of IEEE 15th International Symposium on Power Semiconductor Devices and ICs Cambridge, UK, April 14-17, 2003 p45

    [9]

    Ono S, Saito W, Takashita M, Kurushima S, Tokano K, Yamaguchi M 2007 Proceedings of the 19th International Symposium on Power Semiconductor Devices & ICs Jeju, Korea, May 27-30, 2007 p25

    [10]

    Wang Y, Hu H F, Cheng C 2010 Superlattices Microstuct 47 314

    [11]

    Yu L C, Sheng K 2008 IEEE Trans. Electron Dev. 55 1961

    [12]

    Saito W, Omura I, Aida S, Koduki S, Izumisawa M, Yoshioka H, Ogura T 2005 IEEE Trans. Electron Dev. 52 2317

    [13]

    Shenoy P M, Bhalla A, Dolny G M 1999 Proceedings of the 19th International Symposium on Power Semiconductor Devices & ICs Toronto, Ont, May 26-28, 1999 p99

    [14]

    ISE I S E A 2004 ISE TCAD Release 10.0 DESSISTM (Zurich: ISE Integrated Systems Engineering AG) pp143-621

    [15]

    Song Q W, Zhang Y M, Zhang Y M, Tang X Y 2012 Diamond Relat. Mater. 22 42

    [16]

    Song Q W, Zhang Y M, Zhang Y M, Zhang Q, Guo H, Li Z Y, Wang Z X 2010 Chin. Phys. B 19 047201

    [17]

    Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer Science + Business Media) pp310-311

  • [1]

    Xu J P, Li C X, Wu H P 2005 Acta Phys. Sin. 54 2918 (in Chinese) [徐静平, 李春霞, 吴海平 2005 物理学报 54 2918]

    [2]

    Singh R, Cooper Jr J A, Melloch M R, Chow T P, Palmour J W 2002 IEEE Trans. Electron Dev. 49 665

    [3]

    Casady J B, Agarwal A K, Rowland L B, Valek W F, Brandt C D 1997 Device Research Conference Digest Fort Collins, USA, June 23-25, 1997 p32

    [4]

    Yu L C, Sheng K 2006 Solid-State Electron 50 1062

    [5]

    Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C, Ren L L 2010 Acta Phys. Sin. 59 566 (in Chinese) [杨银堂, 耿振海, 段宝兴, 贾护军, 余涔, 任丽丽 2010 物理学报 59 566]

    [6]

    Fujihira T 1997 Jpn. J. Appl. Phys. 36 6254

    [7]

    Cao L, Pu H B, Chen Z M, Zang Y 2012 Chin. Phys. B 21 017303

    [8]

    Saito W, Omura I, Aida S, Koduki S, Izumisawa M, Ogura T 2003 Proceedings of IEEE 15th International Symposium on Power Semiconductor Devices and ICs Cambridge, UK, April 14-17, 2003 p45

    [9]

    Ono S, Saito W, Takashita M, Kurushima S, Tokano K, Yamaguchi M 2007 Proceedings of the 19th International Symposium on Power Semiconductor Devices & ICs Jeju, Korea, May 27-30, 2007 p25

    [10]

    Wang Y, Hu H F, Cheng C 2010 Superlattices Microstuct 47 314

    [11]

    Yu L C, Sheng K 2008 IEEE Trans. Electron Dev. 55 1961

    [12]

    Saito W, Omura I, Aida S, Koduki S, Izumisawa M, Yoshioka H, Ogura T 2005 IEEE Trans. Electron Dev. 52 2317

    [13]

    Shenoy P M, Bhalla A, Dolny G M 1999 Proceedings of the 19th International Symposium on Power Semiconductor Devices & ICs Toronto, Ont, May 26-28, 1999 p99

    [14]

    ISE I S E A 2004 ISE TCAD Release 10.0 DESSISTM (Zurich: ISE Integrated Systems Engineering AG) pp143-621

    [15]

    Song Q W, Zhang Y M, Zhang Y M, Tang X Y 2012 Diamond Relat. Mater. 22 42

    [16]

    Song Q W, Zhang Y M, Zhang Y M, Zhang Q, Guo H, Li Z Y, Wang Z X 2010 Chin. Phys. B 19 047201

    [17]

    Baliga B J 2008 Fundamentals of Power Semiconductor Devices (New York: Springer Science + Business Media) pp310-311

  • [1] 刘远峰, 李斌成, 赵斌兴, 刘红. SiC光学材料亚表面缺陷的光热辐射检测. 物理学报, 2023, 72(2): 024208. doi: 10.7498/aps.72.20221303
    [2] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [3] 于子恒, 马春红, 白少先. SiC表面圆环槽边缘效应实验研究. 物理学报, 2021, 70(4): 044702. doi: 10.7498/aps.70.20201303
    [4] 黄毅华, 江东亮, 张辉, 陈忠明, 黄政仁. Al掺杂6H-SiC的磁性研究与理论计算. 物理学报, 2017, 66(1): 017501. doi: 10.7498/aps.66.017501
    [5] 卢吴越, 张永平, 陈之战, 程越, 谈嘉慧, 石旺舟. 不同退火方式对Ni/SiC接触界面性质的影响. 物理学报, 2015, 64(6): 067303. doi: 10.7498/aps.64.067303
    [6] 高尚鹏, 祝桐. 基于自洽GW方法的碳化硅准粒子能带结构计算. 物理学报, 2012, 61(13): 137103. doi: 10.7498/aps.61.137103
    [7] 宋坤, 柴常春, 杨银堂, 张现军, 陈斌. 栅漏间表面外延层对4H-SiC功率MESFET击穿特性的改善机理与结构优化. 物理学报, 2012, 61(2): 027202. doi: 10.7498/aps.61.027202
    [8] 贺平逆, 吕晓丹, 赵成利, 宁建平, 秦尤敏, 苟富均. F原子与SiC(100)表面相互作用的分子动力学模拟. 物理学报, 2011, 60(9): 095203. doi: 10.7498/aps.60.095203
    [9] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [10] 张勇, 张崇宏, 周丽宏, 李炳生, 杨义涛. 氦离子注入4H-SiC晶体的纳米硬度研究. 物理学报, 2010, 59(6): 4130-4135. doi: 10.7498/aps.59.4130
    [11] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [12] 金华, 安立楠, 卜凡亮, 李丽华, 王蓉, 杨为佑, 张立功. SiC纳米棒的紫外发光研究. 物理学报, 2009, 58(4): 2594-2598. doi: 10.7498/aps.58.2594
    [13] 黄维, 陈之战, 陈博源, 张静玉, 严成锋, 肖兵, 施尔畏. 氢氟酸刻蚀对Ni/6H-SiC接触性质的作用. 物理学报, 2009, 58(5): 3443-3447. doi: 10.7498/aps.58.3443
    [14] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管. 物理学报, 2009, 58(1): 529-535. doi: 10.7498/aps.58.529
    [15] 马格林, 张玉明, 张义门, 马仲发. SiC表面C 1s谱最优拟合参数的研究. 物理学报, 2008, 57(7): 4125-4129. doi: 10.7498/aps.57.4125
    [16] 马格林, 张玉明, 张义门, 马仲发. SiC外延层表面化学态的研究. 物理学报, 2008, 57(7): 4119-4124. doi: 10.7498/aps.57.4119
    [17] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度. 物理学报, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [18] 徐彭寿, 李拥华, 潘海斌. β-SiC(001)-(2×1)表面结构的第一性原理研究. 物理学报, 2005, 54(12): 5824-5829. doi: 10.7498/aps.54.5824
    [19] 尚也淳, 刘忠立, 王姝睿. SiC Schottky结反向特性的研究. 物理学报, 2003, 52(1): 211-216. doi: 10.7498/aps.52.211
    [20] 姜振益, 许小红, 武海顺, 张富强, 金志浩. SiC多型体几何结构与电子结构研究. 物理学报, 2002, 51(7): 1586-1590. doi: 10.7498/aps.51.1586
计量
  • 文章访问数:  5480
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-13
  • 修回日期:  2014-06-13
  • 刊出日期:  2014-10-05

/

返回文章
返回