搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

工字形太赫兹超材料吸波体的传感特性研究

张玉萍 李彤彤 吕欢欢 黄晓燕 张会云

工字形太赫兹超材料吸波体的传感特性研究

张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云
PDF
导出引用
导出核心图
  • 利用超材料吸波体对材料参数的电磁响应, 可将其应用于传感. 本文设计了一种工字形单元结构的超材料吸波体, 基于频域算法对其在太赫兹频段的传感特性进行数值模拟, 研究了待测样品折射率、厚度及电介质隔层厚度对超材料吸波体传感器的频率灵敏度、振幅灵敏度及品质因数的影响. 研究结果表明:当待测样品厚度为40 μm时, 折射率频率灵敏度可达到153.17 GHz/RIU, 折射率振幅灵敏度可达到41.37%/RIU; 待测样品折射率一定时, 厚度频率灵敏度随其厚度的增大而线性减小; 随着待测样品厚度的增加, RFOM呈增大趋势, 但增大幅度在逐渐减小; TFOM随待测样品厚度的增加而减小.
    • 基金项目: 国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2012FM011)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市创新领军人才项目(批准号:13-CX-25)、中国工程物理研究院太赫兹科学技术基金(批准号:201401)、青岛经济技术开发区重点科技计划项目(批准号:2013-1-64)和山东科技大学科技创新基金(批准号:YC140108)资助的课题.
    [1]

    Taday P F 2004 Philos. Trans. R. Soc. London, Ser. A 362 351

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [3]

    Siegel P H 2004 Microwave Symposium Digest, 2004 IEEE MTT-S International (Fort Worth:IEEE) p1575

    [4]

    Pickwell E, Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301

    [5]

    Siegel P H 2002 IEEE T. Microw Theory 50 910

    [6]

    Schmuttenmaer C A 2004 Chem. Rev. 104 1759

    [7]

    Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [8]

    Veselago V G 1968 Phys. Usp. 10 509

    [9]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [10]

    Lal S, Link S, Halas N J 2007 Nature Photon 1 641

    [11]

    Zhu J, Eleftheriades G V 2009 IEEE Antenn. Wirel. PR 8 295

    [12]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [13]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon 3 148

    [14]

    Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511

    [15]

    O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [16]

    Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107

    [17]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [18]

    Tao H, Strikwerda A C, Liu M, Mondia J P, Ekmekci E, Fan K, Omenetto F G 2010 Appl. Phys. Lett. 97 261909

    [19]

    Withayachumnankul W, Lin H, Serita K, Shah C M, Sriram S, Bhaskaran M, Abbott D 2012 Opt. Express 20 3345

    [20]

    Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 物理学报 59 5715]

    [21]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [22]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476

    [23]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Averitt R D 2010 J. Phys. D:Appl. Phys. 43 225102

    [24]

    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [25]

    Zou T B, Hu F R, Xiao J, Zhang L H, Liu F, Chen T, Niu J H, Xiong X M 2014 Acta Phys. Sin. 63 178103 (in Chinese) [邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名 2014 物理学报 63 178103]

    [26]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [27]

    Xu Z, Gu C, Pei Z B, Liu J, Qu S B, Gu W 2011 Chin. Phys. B 20 017801

    [28]

    Cheng Y Z, Nie Y, Gong R Z 2013 OPT LASER TECHNOL 48 415

    [29]

    Cong L, Singh R 2014 arXiv:1408.3711v1 [physics. optics]

    [30]

    Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101

  • [1]

    Taday P F 2004 Philos. Trans. R. Soc. London, Ser. A 362 351

    [2]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146

    [3]

    Siegel P H 2004 Microwave Symposium Digest, 2004 IEEE MTT-S International (Fort Worth:IEEE) p1575

    [4]

    Pickwell E, Wallace V P 2006 J. Phys. D:Appl. Phys. 39 R301

    [5]

    Siegel P H 2002 IEEE T. Microw Theory 50 910

    [6]

    Schmuttenmaer C A 2004 Chem. Rev. 104 1759

    [7]

    Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401

    [8]

    Veselago V G 1968 Phys. Usp. 10 509

    [9]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [10]

    Lal S, Link S, Halas N J 2007 Nature Photon 1 641

    [11]

    Zhu J, Eleftheriades G V 2009 IEEE Antenn. Wirel. PR 8 295

    [12]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [13]

    Chen H T, Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J 2009 Nature Photon 3 148

    [14]

    Driscoll T, Andreev G O, Basov D N, Palit S, Cho S Y, Jokerst N M, Smith D R 2007 Appl. Phys. Lett. 91 062511

    [15]

    O’Hara J F, Singh R, Brener I, Smirnova E, Han J, Taylor A J, Zhang W 2008 Opt. Express 16 1786

    [16]

    Lahiri B, Khokhar A Z, De La Rue R M, McMeekin S G, Johnson N P 2009 Opt. Express 17 1107

    [17]

    Cubukcu E, Zhang S, Park Y S, Bartal G, Zhang X 2009 Appl. Phys. Lett. 95 043113

    [18]

    Tao H, Strikwerda A C, Liu M, Mondia J P, Ekmekci E, Fan K, Omenetto F G 2010 Appl. Phys. Lett. 97 261909

    [19]

    Withayachumnankul W, Lin H, Serita K, Shah C M, Sriram S, Bhaskaran M, Abbott D 2012 Opt. Express 20 3345

    [20]

    Cheng Y Z, Xiao T, Yang H L, Xiao B X 2010 Acta Phys. Sin. 59 5715 (in Chinese) [程用志, 肖婷, 杨河林, 肖柏勋 2010 物理学报 59 5715]

    [21]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [22]

    Grant J, Ma Y, Saha S, Khalid A, Cumming D R 2011 Opt. Lett. 36 3476

    [23]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Averitt R D 2010 J. Phys. D:Appl. Phys. 43 225102

    [24]

    Shen X, Yang Y, Zang Y, Gu J, Han J, Zhang W, Cui T J 2012 Appl. Phys. Lett. 101 154102

    [25]

    Zou T B, Hu F R, Xiao J, Zhang L H, Liu F, Chen T, Niu J H, Xiong X M 2014 Acta Phys. Sin. 63 178103 (in Chinese) [邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名 2014 物理学报 63 178103]

    [26]

    Ma Y B, Zhang H W, Li Y X, Wang Y C, Lai W E, Li J 2014 Chin. Phys. B 23 058102

    [27]

    Xu Z, Gu C, Pei Z B, Liu J, Qu S B, Gu W 2011 Chin. Phys. B 20 017801

    [28]

    Cheng Y Z, Nie Y, Gong R Z 2013 OPT LASER TECHNOL 48 415

    [29]

    Cong L, Singh R 2014 arXiv:1408.3711v1 [physics. optics]

    [30]

    Singh R, Cao W, Al-Naib I, Cong L, Withayachumnankul W, Zhang W 2014 Appl. Phys. Lett. 105 171101

  • [1] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [2] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体 . 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [3] 郭畅, 张岩. 利用波矢滤波超表面实现超衍射成像. 物理学报, 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [4] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [5] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [6] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [7] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [8] 阎昊岚, 程雅青, 王凯礼, 王雅昕, 陈洋玮, 袁秋林, 马恒. 烷基环己苯异硫氰酸液晶材料太赫兹波吸收. 物理学报, 2019, 68(11): 116102. doi: 10.7498/aps.68.20190209
    [9] 孙会娟, 赵冬梅, 施宇蕾, 周庆莉, 李磊, 张存林. 基于人工复合材料的太赫兹波双波段滤波. 物理学报, 2011, 60(9): 093301. doi: 10.7498/aps.60.093301
    [10] 孙良奎, 程海峰, 周永江, 王军, 庞永强. 一种基于超材料的吸波材料的设计与制备. 物理学报, 2011, 60(10): 108901. doi: 10.7498/aps.60.108901
    [11] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [12] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [13] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [14] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [15] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [16] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [17] 程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜. 基于超材料与电阻型频率选择表面的薄型宽频带吸波体的设计. 物理学报, 2012, 61(13): 134101. doi: 10.7498/aps.61.134101
    [18] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [19] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [20] 常俊, 黎华, 韩英军, 谭智勇, 曹俊诚. 太赫兹量子级联激光器材料生长及表征. 物理学报, 2009, 58(10): 7083-7087. doi: 10.7498/aps.58.7083
  • 引用本文:
    Citation:
计量
  • 文章访问数:  640
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-03
  • 修回日期:  2015-01-07
  • 刊出日期:  2015-06-05

工字形太赫兹超材料吸波体的传感特性研究

  • 1. 山东科技大学电子通信与物理学院, 青岛市太赫兹技术重点实验室, 青岛 266510;
  • 2. 洛斯阿拉莫斯国家实验室, 洛斯阿拉莫斯, 新墨西哥州 87545
    基金项目: 

    国家自然科学基金(批准号:61001018)、山东省自然科学基金(批准号:ZR2012FM011)、山东省高等学校科技计划项目(批准号:J11LG20)、青岛市创新领军人才项目(批准号:13-CX-25)、中国工程物理研究院太赫兹科学技术基金(批准号:201401)、青岛经济技术开发区重点科技计划项目(批准号:2013-1-64)和山东科技大学科技创新基金(批准号:YC140108)资助的课题.

摘要: 利用超材料吸波体对材料参数的电磁响应, 可将其应用于传感. 本文设计了一种工字形单元结构的超材料吸波体, 基于频域算法对其在太赫兹频段的传感特性进行数值模拟, 研究了待测样品折射率、厚度及电介质隔层厚度对超材料吸波体传感器的频率灵敏度、振幅灵敏度及品质因数的影响. 研究结果表明:当待测样品厚度为40 μm时, 折射率频率灵敏度可达到153.17 GHz/RIU, 折射率振幅灵敏度可达到41.37%/RIU; 待测样品折射率一定时, 厚度频率灵敏度随其厚度的增大而线性减小; 随着待测样品厚度的增加, RFOM呈增大趋势, 但增大幅度在逐渐减小; TFOM随待测样品厚度的增加而减小.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回