搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用量子相干性判定开放二能级系统中非马尔可夫性

贺志 李莉 姚春梅 李艳

利用量子相干性判定开放二能级系统中非马尔可夫性

贺志, 李莉, 姚春梅, 李艳
PDF
导出引用
导出核心图
  • 从量子相干性包括l1 norm相干性和量子相对熵相干性的角度建立了判定开放量子系统中非马尔可夫过程的方法, 并给出了相应的判别条件. 作为它们的具体应用, 研究了一个两能级系统分别经历相位衰减通道、 随机幺正通道和振幅耗散通道作用时对应的非马尔可夫过程发生必须满足的条件. 对于三种通道模型, 得到了l1 norm相干性对系统任意态非马尔可夫过程发生的判别条件, 并发现在相位衰减通道和振幅耗散通道中其非马尔可夫过程发生 的条件与用其他方式如信息回流、可分性和量子互熵给出的条件是相同的, 而在随机幺正通道中给出了一个新的且不完全等价于基于信息回流和可分性对应的条件. 至于量子相对熵相干性, 在相位衰减通道中得到了对系统任意态的非马尔可夫过程发生的具体条件, 并发现该条件也等同于基于信息回流、可分性和量子互熵给出的条件. 而在随机幺正通道和振幅耗散通道中得到了系统最大相干态对应的非马尔可夫过程发生的条件.
    • 基金项目: 国家自然科学基金(批准号:61475045, 11404111)、湖南省自然科学基金青年项目(批准号:2015JJ3092)、 湖南省教育厅一般项目(批准号:12C0826)和湖南文理学院重点项目(批准号:14ZD01)资助的课题.
    [1]

    Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401

    [2]

    Bellomo B, LoFranco R, Compagno G 2007 Phys. Rev. Lett. 99 160502

    [3]

    Zhang Y J, Man Z X, Xia Y J 2009 Eur. Phys. J. D 55 173

    [4]

    Xiao X, Fang M F, Li Y L, Zeng K, Wu C 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235502

    [5]

    Xiao X, Fang M F, Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505

    [6]

    Han W, Cui W K, Zhang Y J, Xia Y J 2012 Acta Phys. Sin. 61 230302 (in Chinese) [韩伟, 崔文凯, 张英杰, 夏云杰 2012 物理学报 61 230302]

    [7]

    Shan C J, Liu J B, Chen T, Liu T K, Huang Y X, Li H 2010 Chin. Phys. Lett. 27 100301

    [8]

    Xiao X, Fang M F, Li Y L, Kang G D, Wu C 2010 Opt. Commun. 283 3001

    [9]

    Li C F, Wang H T, Yuan H Y, Ge R C, Guo G C 2011 Chin. Phys. Lett. 28 120302

    [10]

    Han W, Zhang Y J, Xia Y J 2013 Chin. Phys. B 22 010306

    [11]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 物理学报 62 180301]

    [12]

    Zheng L M, Wang F Q, Liu S H 2009 Acta Phys. Sin. 58 2430 (in Chinese) [郑力明, 王发强, 刘颂豪 2009 物理学报 58 2430]

    [13]

    Xiao X, Fang M F, Hu Y M 2011 Phys. Scr. 84 045011

    [14]

    Cai C J, Fang M F, Xiao X, Huang J 2012 Acta Phys. Sin. 61 210303 (in Chinese) [蔡诚俊, 方卯发, 肖兴, 黄江 2012 物理学报 61 210303]

    [15]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [16]

    Rivas A, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403

    [17]

    Lu X M, Wang X G, Sun C P 2010 Phys. Rev. A 82 042103

    [18]

    Hou S C, Yi X X, Yu S X, Oh C H 2011 Phys. Rev. A 83 062115

    [19]

    Luo S, Fu S, Song H 2012 Phys. Rev. A 86 044101

    [20]

    Lorenzo S, Plastina F, Paternostro M 2013 Phys. Rev. A 88 020102

    [21]

    Bylicka B, Chruscinski D, Maniscalco S 2014 Sci. Rep. 4 5720

    [22]

    Chruscinski D, Maniscalco 2014 Phys. Rev. A 112 120404

    [23]

    Liu J, Lu X M, Wang X G 2013 Phys. Rev. A 87 042103

    [24]

    He Z, Yao C, Zou J 2014 Phys. Rev. A 90 042101

    [25]

    Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P, Piilo J 2011 Nat. Phys. 7 931

    [26]

    Tang J S, Li C F, Li Y L, Zou X B, Guo G C 2012 Europhys. Lett. 97 10002

    [27]

    Xu Z Y, Yang W L, Feng M 2010 Phys. Rev. A 81 044105

    [28]

    He Z, Zou J, Li L, Shao B 2011 Phys. Rev. A 83 012108

    [29]

    Zeng H S, Tang N, Zheng Y P, Wang G Y 2011 Phys. Rev. A 84 032118

    [30]

    Haikka P, Cresser J D, Maniscalco S 2011 Phys. Rev. A 83 012112.

    [31]

    Chruscinski D, Wudarski F 2013 Phys. Lett. A 377 1425

    [32]

    Jiang M, Luo S 2013 Phys. Rev. A 88 034101

    [33]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [34]

    Girolami D 2014 Phys. Rev. Lett. 113 170401

    [35]

    Lindblad G 1975 Commun. Math. Phys. 40 147

    [36]

    Ruskai M B 2002 J. Math. Phys. 43 4358

    [37]

    Vedral V, Plenio M B 1997 Phys. Rev. A 57 1619

    [38]

    Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402

    [39]

    Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120

    [40]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) p472

    [41]

    Vacchini B 2012 J. Phys. B: At. Mol. Opt. Phys. 45 154007

    [42]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [43]

    Xi Z J, Li Y M, Fan H 2014 arXiv 1408.3194v2 [quant-ph]

    [44]

    Du S, Bei Z, Guo Y 2015 Phys. Rev. A 91 052120

    [45]

    Bromley T R, Cianciaruso M, Adesso G 2015 Phys. Rev. Lett. 114 210401

    [46]

    Zhang Y J, Han W, Xia Y J, Yu Y M, Fan H 2015 arXiv 1502.02446v1 [quant-ph]

  • [1]

    Buluta I, Ashhab S, Nori F 2011 Rep. Prog. Phys. 74 104401

    [2]

    Bellomo B, LoFranco R, Compagno G 2007 Phys. Rev. Lett. 99 160502

    [3]

    Zhang Y J, Man Z X, Xia Y J 2009 Eur. Phys. J. D 55 173

    [4]

    Xiao X, Fang M F, Li Y L, Zeng K, Wu C 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235502

    [5]

    Xiao X, Fang M F, Li Y L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 185505

    [6]

    Han W, Cui W K, Zhang Y J, Xia Y J 2012 Acta Phys. Sin. 61 230302 (in Chinese) [韩伟, 崔文凯, 张英杰, 夏云杰 2012 物理学报 61 230302]

    [7]

    Shan C J, Liu J B, Chen T, Liu T K, Huang Y X, Li H 2010 Chin. Phys. Lett. 27 100301

    [8]

    Xiao X, Fang M F, Li Y L, Kang G D, Wu C 2010 Opt. Commun. 283 3001

    [9]

    Li C F, Wang H T, Yuan H Y, Ge R C, Guo G C 2011 Chin. Phys. Lett. 28 120302

    [10]

    Han W, Zhang Y J, Xia Y J 2013 Chin. Phys. B 22 010306

    [11]

    He Z, Li L W 2013 Acta Phys. Sin. 62 180301 (in Chinese) [贺志, 李龙武 2013 物理学报 62 180301]

    [12]

    Zheng L M, Wang F Q, Liu S H 2009 Acta Phys. Sin. 58 2430 (in Chinese) [郑力明, 王发强, 刘颂豪 2009 物理学报 58 2430]

    [13]

    Xiao X, Fang M F, Hu Y M 2011 Phys. Scr. 84 045011

    [14]

    Cai C J, Fang M F, Xiao X, Huang J 2012 Acta Phys. Sin. 61 210303 (in Chinese) [蔡诚俊, 方卯发, 肖兴, 黄江 2012 物理学报 61 210303]

    [15]

    Breuer H P, Laine E M, Piilo J 2009 Phys. Rev. Lett. 103 210401

    [16]

    Rivas A, Huelga S F, Plenio M B 2010 Phys. Rev. Lett. 105 050403

    [17]

    Lu X M, Wang X G, Sun C P 2010 Phys. Rev. A 82 042103

    [18]

    Hou S C, Yi X X, Yu S X, Oh C H 2011 Phys. Rev. A 83 062115

    [19]

    Luo S, Fu S, Song H 2012 Phys. Rev. A 86 044101

    [20]

    Lorenzo S, Plastina F, Paternostro M 2013 Phys. Rev. A 88 020102

    [21]

    Bylicka B, Chruscinski D, Maniscalco S 2014 Sci. Rep. 4 5720

    [22]

    Chruscinski D, Maniscalco 2014 Phys. Rev. A 112 120404

    [23]

    Liu J, Lu X M, Wang X G 2013 Phys. Rev. A 87 042103

    [24]

    He Z, Yao C, Zou J 2014 Phys. Rev. A 90 042101

    [25]

    Liu B H, Li L, Huang Y F, Li C F, Guo G C, Laine E M, Breuer H P, Piilo J 2011 Nat. Phys. 7 931

    [26]

    Tang J S, Li C F, Li Y L, Zou X B, Guo G C 2012 Europhys. Lett. 97 10002

    [27]

    Xu Z Y, Yang W L, Feng M 2010 Phys. Rev. A 81 044105

    [28]

    He Z, Zou J, Li L, Shao B 2011 Phys. Rev. A 83 012108

    [29]

    Zeng H S, Tang N, Zheng Y P, Wang G Y 2011 Phys. Rev. A 84 032118

    [30]

    Haikka P, Cresser J D, Maniscalco S 2011 Phys. Rev. A 83 012112.

    [31]

    Chruscinski D, Wudarski F 2013 Phys. Lett. A 377 1425

    [32]

    Jiang M, Luo S 2013 Phys. Rev. A 88 034101

    [33]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [34]

    Girolami D 2014 Phys. Rev. Lett. 113 170401

    [35]

    Lindblad G 1975 Commun. Math. Phys. 40 147

    [36]

    Ruskai M B 2002 J. Math. Phys. 43 4358

    [37]

    Vedral V, Plenio M B 1997 Phys. Rev. A 57 1619

    [38]

    Wolf M M, Eisert J, Cubitt T S, Cirac J I 2008 Phys. Rev. Lett. 101 150402

    [39]

    Shao L H, Xi Z J, Fan H, Li Y M 2015 Phys. Rev. A 91 042120

    [40]

    Breuer H P, Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press) p472

    [41]

    Vacchini B 2012 J. Phys. B: At. Mol. Opt. Phys. 45 154007

    [42]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [43]

    Xi Z J, Li Y M, Fan H 2014 arXiv 1408.3194v2 [quant-ph]

    [44]

    Du S, Bei Z, Guo Y 2015 Phys. Rev. A 91 052120

    [45]

    Bromley T R, Cianciaruso M, Adesso G 2015 Phys. Rev. Lett. 114 210401

    [46]

    Zhang Y J, Han W, Xia Y J, Yu Y M, Fan H 2015 arXiv 1502.02446v1 [quant-ph]

  • [1] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性. 物理学报, 2018, 67(15): 150302. doi: 10.7498/aps.67.20180812
    [2] 倪光炯, 陈苏卿, 周谷声. 辐射的相干性和熵的增加. 物理学报, 1982, 31(5): 585-603. doi: 10.7498/aps.31.585
    [3] 印建平, 朱士群, 高伟建, 王育竹. 双模激光场的二阶量子相干性及其时谱特性. 物理学报, 1995, 44(1): 72-79. doi: 10.7498/aps.44.72
    [4] 郝三如, 王麓雅. 用外加驱动场压缩有热槽相互作用二态量子系统的退相干性. 物理学报, 2000, 49(4): 610-614. doi: 10.7498/aps.49.610
    [5] 张登玉. 消除简并双光子过程中二能级原子的消相干性. 物理学报, 2002, 51(3): 532-535. doi: 10.7498/aps.51.532
    [6] 贾克宁, 梁颖, 刘中波, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对真空诱导相干性相关的探测场吸收的影响. 物理学报, 2012, 61(5): 054207. doi: 10.7498/aps.61.054207
    [7] 王之江. 电磁辐射的相干性. 物理学报, 1963, 19(5): 320-335. doi: 10.7498/aps.19.320
    [8] 赵晓娜, 庄煜昕, 汪中. 相干布居数拍频信号与基态超精细子能级相干性关系的研究. 物理学报, 2015, 64(13): 134203. doi: 10.7498/aps.64.134203
    [9] 林银, 黄明达, 於亚飞, 张智明. 从离散Wigner函数的角度探讨量子相干性度量. 物理学报, 2017, 66(11): 110301. doi: 10.7498/aps.66.110301
    [10] 叶世强, 陈小余. 基于量子相干性的四体贝尔不等式构建. 物理学报, 2017, 66(20): 200301. doi: 10.7498/aps.66.200301
    [11] 伊天成, 丁悦然, 任杰, 王艺敏, 尤文龙. 具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性. 物理学报, 2018, 67(14): 140303. doi: 10.7498/aps.67.20172755
    [12] 谢文贤, 许鹏飞, 蔡力, 李东平. 随机双指数记忆耗散系统的非马尔可夫扩散. 物理学报, 2013, 62(8): 080503. doi: 10.7498/aps.62.080503
    [13] 梁文青, 储开芹, 张智明, 谢绳武. 超冷V型三能级原子注入的微波激射:原子相干性对腔场光子统计的影响. 物理学报, 2001, 50(12): 2345-2355. doi: 10.7498/aps.50.2345
    [14] 黄春福, 郭 儒, 刘思敏. 饱和对数非线性介质中非相干孤子碰撞对相干性的改善. 物理学报, 2006, 55(3): 1218-1223. doi: 10.7498/aps.55.1218
    [15] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
    [16] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福, 肖瑞. 复自相干度度量超连续谱相干性. 物理学报, 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [17] 陈顺意, 丁攀峰, 蒲继雄. 部分相干径向偏振光束传输中相干性研究. 物理学报, 2015, 64(13): 134201. doi: 10.7498/aps.64.134201
    [18] 蔡诚俊, 方卯发, 肖兴, 黄江. 非马尔可夫环境下经典场驱动Jaynes-Cummings模型中原子的熵压缩. 物理学报, 2012, 61(21): 210303. doi: 10.7498/aps.61.210303
    [19] 贾晓军, 苏晓龙, 潘 庆, 谢常德, 彭堃墀. 具有经典相干性的两组EPR纠缠态光场的实验产生. 物理学报, 2005, 54(6): 2717-2722. doi: 10.7498/aps.54.2717
    [20] 周艳微, 林 强, 王育竹, 叶存云. 基于绝热快速通道控制原子布居数及其相干性的研究. 物理学报, 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
  • 引用本文:
    Citation:
计量
  • 文章访问数:  783
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-08
  • 修回日期:  2015-02-08
  • 刊出日期:  2015-07-05

利用量子相干性判定开放二能级系统中非马尔可夫性

  • 1. 湖南文理学院物理与电子科学学院, 常德 415000
    基金项目: 

    国家自然科学基金(批准号:61475045, 11404111)、湖南省自然科学基金青年项目(批准号:2015JJ3092)、 湖南省教育厅一般项目(批准号:12C0826)和湖南文理学院重点项目(批准号:14ZD01)资助的课题.

摘要: 从量子相干性包括l1 norm相干性和量子相对熵相干性的角度建立了判定开放量子系统中非马尔可夫过程的方法, 并给出了相应的判别条件. 作为它们的具体应用, 研究了一个两能级系统分别经历相位衰减通道、 随机幺正通道和振幅耗散通道作用时对应的非马尔可夫过程发生必须满足的条件. 对于三种通道模型, 得到了l1 norm相干性对系统任意态非马尔可夫过程发生的判别条件, 并发现在相位衰减通道和振幅耗散通道中其非马尔可夫过程发生 的条件与用其他方式如信息回流、可分性和量子互熵给出的条件是相同的, 而在随机幺正通道中给出了一个新的且不完全等价于基于信息回流和可分性对应的条件. 至于量子相对熵相干性, 在相位衰减通道中得到了对系统任意态的非马尔可夫过程发生的具体条件, 并发现该条件也等同于基于信息回流、可分性和量子互熵给出的条件. 而在随机幺正通道和振幅耗散通道中得到了系统最大相干态对应的非马尔可夫过程发生的条件.

English Abstract

参考文献 (46)

目录

    /

    返回文章
    返回