搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性

曹汝楠 徐飞 朱佳斌 葛升 王文贞 徐海涛 徐闰 吴杨琳 马忠权 洪峰 蒋最敏

平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性

曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏
PDF
导出引用
导出核心图
  • 本文研究了钙钛矿太阳能电池不同工作温度下光伏性能的时间响应特性. 结果表明,钙钛矿太阳能电池光伏性能需要经过一段时间光照后才能达到稳定. 且随着工作温度降低,电池光伏性能达到稳定所需的响应时间也越长. 当电池达到稳定后,电池开路电压会随着温度降低而增大. 在此之前,开路电压会在低温下发生显著的衰减. 这意味着钙钛矿太阳能电池的时间响应主要来源于其内部内建电场的缓慢变化. 通过测量光照前后电池外量子效率发现,光生载流子的分离和收集效率会在光照后得到明显改善. 这也暗示了内建电场在光照前后发生了改变. 钙钛矿材料中的离子迁移被认为是引起内建电场发生变化的原因. 这有助于更好地理解钙钛矿太阳能电池中载流子输运机制.
      通信作者: 徐飞, feixu@staff.shu.edu.cn;runxu@staff.shu.edu.cn ; 徐闰, feixu@staff.shu.edu.cn;runxu@staff.shu.edu.cn
    • 基金项目: 复旦大学应用表面物理国家重点实验室(批准号:KF2015_01)和国家自然科学基金(批准号:61274067,60876045)资助的课题.
    [1]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [2]

    La-o-vorakiat C, Salim T, Kadro J, Khuc M T, Haselsberger R, Cheng L, Xia H, Gurzadyan G G, Su H, Lam Y M, Marcus R A, Michel-Beyerle M E, Chia E E M 2015 Nat. Commun. 6 7903

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234

    [6]

    Zhang H, Qiao X, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 J. Mater. Chem. A 3 11762

    [7]

    Cojocaru L, Uchida S, Sanehira Y, Gonzalez-Pedro V, Bisquert J, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 1557

    [8]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [9]

    Ge S, Xu H, Wang W, Cao R, Wu Y, Xu W, Zhu J, Xue F, Hong F, Xu R, Xu F, Wang L, Huang J 2016 Vacuum 128 91

    [10]

    Ono L K, Raga S R, Wang S, Kato Y, Qi Y 2015 J. Mater. Chem. A 3 9074

    [11]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [12]

    Huang J, Wang H, Qi Y, Yu J 2014 Appl. Phys. Lett. 104 203301

    [13]

    Zou Y, Holmes R J 2013 Appl. Phys. Lett. 103 053302

    [14]

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese) [石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 物理学报 64 038402]

    [15]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193

    [16]

    Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279

    [17]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [18]

    Yuan Y, Xu R, Xu H T, Hong F, Xu F, Wang L J 2015 Chin. Phys. B 24 116302

    [19]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovoltaics 5 401

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8

    [21]

    Liu F, Zhu J, Wei J, Li Y, L M, Yang S, Zhang B, Yao J, Dai S 2014 Appl. Phys. Lett. 104 253508

    [22]

    Rana O, Srivastava R, Grover R, Zulfequar M, Husain M, Kamalasanan M N 2011 Synth. Met. 161 828

    [23]

    Zhao S R, Huang Z P, Sun L, Sun P C, Zhang C J, Wu Y H, Cao H, Wang S L, Zhu J H 2013 Acta Phys. Sin. 62 188801 (in Chinese) [赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩 2013 物理学报 62 188801]

    [24]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [25]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451

    [26]

    Lai T H, Tsang S W, Manders J R, Chen S, So F 2013 Mater. Today 16 424

    [27]

    Xu L, Lee Y J, Hsu J W P 2014 Appl. Phys. Lett. 105 123904

  • [1]

    Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088

    [2]

    La-o-vorakiat C, Salim T, Kadro J, Khuc M T, Haselsberger R, Cheng L, Xia H, Gurzadyan G G, Su H, Lam Y M, Marcus R A, Michel-Beyerle M E, Chia E E M 2015 Nat. Commun. 6 7903

    [3]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [4]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234

    [6]

    Zhang H, Qiao X, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 J. Mater. Chem. A 3 11762

    [7]

    Cojocaru L, Uchida S, Sanehira Y, Gonzalez-Pedro V, Bisquert J, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 1557

    [8]

    Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F 2014 J. Phys. Chem. Lett. 5 2662

    [9]

    Ge S, Xu H, Wang W, Cao R, Wu Y, Xu W, Zhu J, Xue F, Hong F, Xu R, Xu F, Wang L, Huang J 2016 Vacuum 128 91

    [10]

    Ono L K, Raga S R, Wang S, Kato Y, Qi Y 2015 J. Mater. Chem. A 3 9074

    [11]

    Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511

    [12]

    Huang J, Wang H, Qi Y, Yu J 2014 Appl. Phys. Lett. 104 203301

    [13]

    Zou Y, Holmes R J 2013 Appl. Phys. Lett. 103 053302

    [14]

    Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese) [石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 物理学报 64 038402]

    [15]

    Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193

    [16]

    Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279

    [17]

    Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306

    [18]

    Yuan Y, Xu R, Xu H T, Hong F, Xu F, Wang L J 2015 Chin. Phys. B 24 116302

    [19]

    Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovoltaics 5 401

    [20]

    Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8

    [21]

    Liu F, Zhu J, Wei J, Li Y, L M, Yang S, Zhang B, Yao J, Dai S 2014 Appl. Phys. Lett. 104 253508

    [22]

    Rana O, Srivastava R, Grover R, Zulfequar M, Husain M, Kamalasanan M N 2011 Synth. Met. 161 828

    [23]

    Zhao S R, Huang Z P, Sun L, Sun P C, Zhang C J, Wu Y H, Cao H, Wang S L, Zhu J H 2013 Acta Phys. Sin. 62 188801 (in Chinese) [赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩 2013 物理学报 62 188801]

    [24]

    Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984

    [25]

    Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451

    [26]

    Lai T H, Tsang S W, Manders J R, Chen S, So F 2013 Mater. Today 16 424

    [27]

    Xu L, Lee Y J, Hsu J W P 2014 Appl. Phys. Lett. 105 123904

  • [1] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [2] 丁美斌, 娄朝刚, 王琦龙, 孙强. GaAs量子阱太阳能电池量子效率的研究. 物理学报, 2014, 63(19): 198502. doi: 10.7498/aps.63.198502
    [3] 柴磊, 钟敏. 钙钛矿太阳能电池近期进展. 物理学报, 2016, 65(23): 237902. doi: 10.7498/aps.65.237902
    [4] 丁雄傑, 倪露, 马圣博, 马英壮, 肖立新, 陈志坚. 钙钛矿太阳能电池中电子传输材料的研究进展. 物理学报, 2015, 64(3): 038802. doi: 10.7498/aps.64.038802
    [5] 石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波. 钙钛矿太阳能电池中S形伏安特性研究. 物理学报, 2015, 64(3): 038402. doi: 10.7498/aps.64.038402
    [6] 王言博, 崔丹钰, 张才益, 韩礼元, 杨旭东. 钙钛矿太阳能电池研究进展: 空间电势与光电转换机制. 物理学报, 2019, 68(15): 158401. doi: 10.7498/aps.68.20190569
    [7] 宋志浩, 王世荣, 肖殷, 李祥高. 新型空穴传输材料在钙钛矿太阳能电池中的研究进展. 物理学报, 2015, 64(3): 033301. doi: 10.7498/aps.64.033301
    [8] 杨迎国, 阴广志, 冯尚蕾, 李萌, 季庚午, 宋飞, 文闻, 高兴宇. 湿度环境下钙钛矿太阳能电池薄膜微结构演化的同步辐射原位实时研究. 物理学报, 2017, 66(1): 018401. doi: 10.7498/aps.66.018401
    [9] 范伟利, 杨宗林, 张振雲, 齐俊杰. 高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究. 物理学报, 2018, 67(22): 228801. doi: 10.7498/aps.67.20181457
    [10] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
  • 引用本文:
    Citation:
计量
  • 文章访问数:  569
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-27
  • 修回日期:  2016-05-26
  • 刊出日期:  2016-09-20

平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性

    基金项目: 

    复旦大学应用表面物理国家重点实验室(批准号:KF2015_01)和国家自然科学基金(批准号:61274067,60876045)资助的课题.

摘要: 本文研究了钙钛矿太阳能电池不同工作温度下光伏性能的时间响应特性. 结果表明,钙钛矿太阳能电池光伏性能需要经过一段时间光照后才能达到稳定. 且随着工作温度降低,电池光伏性能达到稳定所需的响应时间也越长. 当电池达到稳定后,电池开路电压会随着温度降低而增大. 在此之前,开路电压会在低温下发生显著的衰减. 这意味着钙钛矿太阳能电池的时间响应主要来源于其内部内建电场的缓慢变化. 通过测量光照前后电池外量子效率发现,光生载流子的分离和收集效率会在光照后得到明显改善. 这也暗示了内建电场在光照前后发生了改变. 钙钛矿材料中的离子迁移被认为是引起内建电场发生变化的原因. 这有助于更好地理解钙钛矿太阳能电池中载流子输运机制.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回