搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时域多分辨算法的非球形气溶胶散射特性仿真模拟

胡帅 高太长 李浩 杨波 江志东 陈鸣 李书磊

基于时域多分辨算法的非球形气溶胶散射特性仿真模拟

胡帅, 高太长, 李浩, 杨波, 江志东, 陈鸣, 李书磊
PDF
导出引用
导出核心图
  • 非球形气溶胶的散射特性是影响辐射传输模拟准确性的重要因素.为实现非球形、非均质气溶胶散射特性的模拟,基于MRTD(multi-resolution time-domain)方法建立了一个新的气溶胶散射模型.采用MRTD技术实现了近场电磁场的计算;考虑气溶胶的特殊性,推导了基于体积积分方法的近远场外推方法,实现了粒子散射振幅矩阵和穆勒矩阵的仿真;构建了粒子吸收和消光截面的计算模型,实现了粒子积分散射特性的高精度模拟.将MRTD散射模型的结果与Mie理论、T矩阵法进行了对比,验证了模型的准确性;讨论了空间网格粗细对模拟精度的影响,并定量分析了模型的运行效率.结果表明,MRTD散射模型的相函数模拟误差小于8%,其中前向散射方向小于4%;当粒径与入射光波长相当时,消光和散射效率因子的相对误差小于0.1%;空间网格粗细对模拟精度影响显著,当粒子尺度参数小于20时,在相同模拟精度要求下,所需网格尺寸随尺度参数呈先增大后减小的特征.
      通信作者: 高太长, gaotc@gmail.com
    • 基金项目: 国家自然科学基金(批准号:41575025,41575024)资助的课题.
    [1]

    Dou T, Xiao C, Shindell D T, Liu J, Ming J, Qin D 2012 Atmos. Chem. Phys. 12 7995

    [2]

    Liou K N, Takano Y 1994 Atmos. Res. 31 271

    [3]

    Intergovernmental Panel of Global Climate Change 2007 IPCC:Climate Change

    [4]

    Liou K N 2003 An Introduction to Atmospheric Radiation (San Diego:Academic Press)

    [5]

    Liou K N, Takano Y, Yang P 2013 J. Quantit. Spectrosc. Radiat. Transfer 127 149

    [6]

    Rao R Z 2012 Modern Optics (Beijing:Scientific Express) p31[饶瑞中 2012 现代大气光学(北京:科学出版社)第31页]

    [7]

    Hu S, Gao T C, Li H, Liu L, Liu X C, Zhang T, Cheng T J, Li W T, Dai Z H, Su X J 2016 J. Geophys. Res. 121 doi:101002/2015JD024105

    [8]

    Evans K F, Stephens G L 1991 J. Quant. Spectrosc. Radiat. Transfer 46 413

    [9]

    Evans K F 1998 J. Atmos. Sci. 55 429

    [10]

    Han Y, Wang T J, Rao R Z, Wang Y J 2008 Acta Phys. Sin. 57 7396 (in Chinese)[韩永, 王体健, 饶瑞中, 王英俭 2008 物理学报 57 7396]

    [11]

    Hu S, Gao T C, Liu L 2014 J. Meteorolog. Sci. 34 612 (in Chinese)[胡帅, 高太长, 刘磊 2014 气象科学 34 612]

    [12]

    Zhang X L, Huang Y B, Rao R Z 2013 High Power Laser and Particle Beams 25 1675 (in Chinese)[张小林, 黄印博, 饶瑞中 2013 强激光与粒子束 25 1675]

    [13]

    Herman M, Deuzé J L, Marchand A, Roger B, Lallart P 2005 J. Geophys. Res. 110 D10S02

    [14]

    Yang P, Liou K N, Bi L, Liu C, Yi B, Baum B A 2015 Adv. Atmos. Sci. 32 32

    [15]

    Mishchenko M I, Hovenier J W, Travis L D 2000 Light Scattering by Nonspherical Particles, Thoery, Measurements, and Application (New York:Academic Press)

    [16]

    Yang P, Liou K N 1995 J. Opt. Soc. Am. A 12 12

    [17]

    Mishchenko M I, Travis L D 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309

    [18]

    Bi L, Yang P 2016 J. Quant. Spectrosc. Radiat. Transfer 178 93

    [19]

    Voshchinnikov N V, Farafonov V G 1993 Astrophys. Space Sci. 204 19

    [20]

    Al-Rizzo H M, Tranquilla J M 1995 J. Computat. Phys. 119 356

    [21]

    Harrington R F 1968 Field Computation by Moment Methods (New York:Macmillan)

    [22]

    Draine B T 1988 Astrophys. J. 333 848

    [23]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [24]

    Morgan M A, Mei K K 1979 IEEE Trans. Antenn. Propagat. 27 202

    [25]

    Liu C, Panetta R L, Yang P 2013 J. Quant. Spectrosc. Radiat. Transfer 129 169

    [26]

    Liu C, Panetta R L, Yang P 2012 J. Quant. Spectrosc. Radiat. Transfer 113 1728

    [27]

    Liu Y, Chen Y, Zhang P 2013 Prog. Electromagn. Res. 143 223

    [28]

    Cheong Y W, Lee Y M, Ra K H, Kang J G, Shin C C 1999 IEEE Microw. Guided Wave Lett. 9 297

    [29]

    Dai S Y, Wu Z S 2008 Acta Phys. Sin. 57 7636 (in Chinese)[代少玉, 吴振森 2008 物理学报 57 7636]

    [30]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York:John Wiley & Sons)

    [31]

    Tentzeris E M, Cangellaris A, Katehi L P B, Harvey J 2003 IEEE Trans. Microw. Tech. 50 501

    [32]

    Liu Y W, Chen Y W, Xu X, Liu Z X 2013 Acta Phys. Sin. 62 034101 (in Chinese)[刘亚文, 陈亦望, 徐鑫, 刘宗信 2013 物理学报 62 034101]

    [33]

    Gao Q, Cao Q, Zhou J 2009 International Forum on Information Technology and Applications 2009 359-362

    [34]

    Griffiths D J 2014 Introduction to Electrodynamics (third edtion) (New York:Pearson Education)

    [35]

    van der Hulst H C 1981 Light Scattering by Small Particles (New York:Dover Publications)

    [36]

    Curtis D B, Meland B, Aycibin M 2008 J. Geophys. Res. 113 D08210

  • [1]

    Dou T, Xiao C, Shindell D T, Liu J, Ming J, Qin D 2012 Atmos. Chem. Phys. 12 7995

    [2]

    Liou K N, Takano Y 1994 Atmos. Res. 31 271

    [3]

    Intergovernmental Panel of Global Climate Change 2007 IPCC:Climate Change

    [4]

    Liou K N 2003 An Introduction to Atmospheric Radiation (San Diego:Academic Press)

    [5]

    Liou K N, Takano Y, Yang P 2013 J. Quantit. Spectrosc. Radiat. Transfer 127 149

    [6]

    Rao R Z 2012 Modern Optics (Beijing:Scientific Express) p31[饶瑞中 2012 现代大气光学(北京:科学出版社)第31页]

    [7]

    Hu S, Gao T C, Li H, Liu L, Liu X C, Zhang T, Cheng T J, Li W T, Dai Z H, Su X J 2016 J. Geophys. Res. 121 doi:101002/2015JD024105

    [8]

    Evans K F, Stephens G L 1991 J. Quant. Spectrosc. Radiat. Transfer 46 413

    [9]

    Evans K F 1998 J. Atmos. Sci. 55 429

    [10]

    Han Y, Wang T J, Rao R Z, Wang Y J 2008 Acta Phys. Sin. 57 7396 (in Chinese)[韩永, 王体健, 饶瑞中, 王英俭 2008 物理学报 57 7396]

    [11]

    Hu S, Gao T C, Liu L 2014 J. Meteorolog. Sci. 34 612 (in Chinese)[胡帅, 高太长, 刘磊 2014 气象科学 34 612]

    [12]

    Zhang X L, Huang Y B, Rao R Z 2013 High Power Laser and Particle Beams 25 1675 (in Chinese)[张小林, 黄印博, 饶瑞中 2013 强激光与粒子束 25 1675]

    [13]

    Herman M, Deuzé J L, Marchand A, Roger B, Lallart P 2005 J. Geophys. Res. 110 D10S02

    [14]

    Yang P, Liou K N, Bi L, Liu C, Yi B, Baum B A 2015 Adv. Atmos. Sci. 32 32

    [15]

    Mishchenko M I, Hovenier J W, Travis L D 2000 Light Scattering by Nonspherical Particles, Thoery, Measurements, and Application (New York:Academic Press)

    [16]

    Yang P, Liou K N 1995 J. Opt. Soc. Am. A 12 12

    [17]

    Mishchenko M I, Travis L D 1998 J. Quant. Spectrosc. Radiat. Transfer 60 309

    [18]

    Bi L, Yang P 2016 J. Quant. Spectrosc. Radiat. Transfer 178 93

    [19]

    Voshchinnikov N V, Farafonov V G 1993 Astrophys. Space Sci. 204 19

    [20]

    Al-Rizzo H M, Tranquilla J M 1995 J. Computat. Phys. 119 356

    [21]

    Harrington R F 1968 Field Computation by Moment Methods (New York:Macmillan)

    [22]

    Draine B T 1988 Astrophys. J. 333 848

    [23]

    Draine B T, Flatau P J 1994 J. Opt. Soc. Am. A 11 1491

    [24]

    Morgan M A, Mei K K 1979 IEEE Trans. Antenn. Propagat. 27 202

    [25]

    Liu C, Panetta R L, Yang P 2013 J. Quant. Spectrosc. Radiat. Transfer 129 169

    [26]

    Liu C, Panetta R L, Yang P 2012 J. Quant. Spectrosc. Radiat. Transfer 113 1728

    [27]

    Liu Y, Chen Y, Zhang P 2013 Prog. Electromagn. Res. 143 223

    [28]

    Cheong Y W, Lee Y M, Ra K H, Kang J G, Shin C C 1999 IEEE Microw. Guided Wave Lett. 9 297

    [29]

    Dai S Y, Wu Z S 2008 Acta Phys. Sin. 57 7636 (in Chinese)[代少玉, 吴振森 2008 物理学报 57 7636]

    [30]

    Bohren C F, Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York:John Wiley & Sons)

    [31]

    Tentzeris E M, Cangellaris A, Katehi L P B, Harvey J 2003 IEEE Trans. Microw. Tech. 50 501

    [32]

    Liu Y W, Chen Y W, Xu X, Liu Z X 2013 Acta Phys. Sin. 62 034101 (in Chinese)[刘亚文, 陈亦望, 徐鑫, 刘宗信 2013 物理学报 62 034101]

    [33]

    Gao Q, Cao Q, Zhou J 2009 International Forum on Information Technology and Applications 2009 359-362

    [34]

    Griffiths D J 2014 Introduction to Electrodynamics (third edtion) (New York:Pearson Education)

    [35]

    van der Hulst H C 1981 Light Scattering by Small Particles (New York:Dover Publications)

    [36]

    Curtis D B, Meland B, Aycibin M 2008 J. Geophys. Res. 113 D08210

  • [1] 范萌, 陈良富, 李莘莘, 陶金花, 苏林, 邹铭敏, 张莹, 韩冬. 非球形气溶胶粒子短波红外散射特性研究. 物理学报, 2012, 61(20): 204202. doi: 10.7498/aps.61.204202
    [2] 曹奇志, 元昌安, 胡宝清, 任文艺, 赵银军, 张晶, 李建映, 邓婷, Mingwu Jin. 基于双折射晶体的快拍穆勒矩阵成像测偏原理分析. 物理学报, 2018, 67(10): 104209. doi: 10.7498/aps.67.20172604
    [3] 朱元庆, 曲兴华, 张福民, 陶会荣. 实际加工表面红外激光散射特性的实验研究. 物理学报, 2013, 62(24): 244201. doi: 10.7498/aps.62.244201
    [4] 山田亮子, 渡边光男, 高飞, 刘华锋. 应用蒙特卡罗模拟进行正电子发射断层成像仪散射特性分析. 物理学报, 2009, 58(5): 3584-3591. doi: 10.7498/aps.58.3584
    [5] 宋跃辉, 周煜东, 王玉峰, 李仕春, 高飞, 李博, 华灯鑫. 水云增长过程中的云滴谱及散射特性分析. 物理学报, 2018, 67(24): 249201. doi: 10.7498/aps.67.20181544
    [6] 李雪萍, 纪奕才, 卢伟, 方广有. 车载探地雷达信号在分层介质中的散射特性. 物理学报, 2014, 63(4): 044201. doi: 10.7498/aps.63.044201
    [7] 王丹丹, 李志坚. 一维相位缺陷量子行走的共振传输. 物理学报, 2016, 65(6): 060301. doi: 10.7498/aps.65.060301
    [8] 胡帅, 高太长, 刘磊, 易红亮, 贲勋. 偏振光在非球形气溶胶中传输特性的Monte Carlo仿真. 物理学报, 2015, 64(9): 094201. doi: 10.7498/aps.64.094201
    [9] 代少玉, 吴振森, 徐仰彬. 用基于Daubechies尺度函数的时域多分辨分析计算电磁散射. 物理学报, 2007, 56(2): 786-790. doi: 10.7498/aps.56.786
    [10] 白璐, 汤双庆, 吴振森, 谢品华, 汪世美. 紫外波段多分散系气溶胶散射相函数随机抽样方法研究. 物理学报, 2010, 59(3): 1749-1755. doi: 10.7498/aps.59.1749
    [11] 张学海, 魏合理, 戴聪明, 曹亚楠, 李学彬. 取向比对椭球气溶胶粒子散射特性的影响. 物理学报, 2015, 64(22): 224205. doi: 10.7498/aps.64.224205
    [12] 常梅, 金亚秋. 随机非球形粒子全极化散射的时间相关Mueller矩阵解. 物理学报, 2002, 51(1): 74-83. doi: 10.7498/aps.51.74
    [13] 聂敏, 任家明, 杨光, 张美玲, 裴昌幸. 非球形气溶胶粒子及大气相对湿度对自由空间量子通信性能的影响. 物理学报, 2016, 65(19): 190301. doi: 10.7498/aps.65.190301
    [14] 王均宏, 李铮, 张雪芹. 微带阵列天线的时域散射特性. 物理学报, 2011, 60(5): 051301. doi: 10.7498/aps.60.051301
    [15] 刘亚文, 陈亦望, 徐鑫, 刘宗信. 基于辅助差分方程的完全匹配层在时域多分辨率分析算法中的应用与性能分析. 物理学报, 2013, 62(3): 034101. doi: 10.7498/aps.62.034101
    [16] 崔帅, 张晓娟, 方广有. 基于递归T矩阵的离散随机散射体散射特性研究. 物理学报, 2014, 63(15): 154202. doi: 10.7498/aps.63.154202
    [17] 王体健, 韩 永, 饶瑞中, 王英俭. 大气气溶胶物理光学特性研究进展. 物理学报, 2008, 57(11): 7396-7407. doi: 10.7498/aps.57.7396
    [18] 李霞, 张镭. 基于后向轨迹追踪模式分析SACOL气溶胶来源及其光学特性. 物理学报, 2012, 61(2): 023402. doi: 10.7498/aps.61.023402
    [19] 王红霞, 竹有章, 田涛, 李爱君. 激光在不同类型气溶胶中传输特性研究. 物理学报, 2013, 62(2): 024214. doi: 10.7498/aps.62.024214
    [20] 狄慧鸽, 侯晓龙, 赵虎, 阎蕾洁, 卫鑫, 赵欢, 华灯鑫. 多波长激光雷达探测多种天气气溶胶光学特性与分析. 物理学报, 2014, 63(24): 244206. doi: 10.7498/aps.63.244206
  • 引用本文:
    Citation:
计量
  • 文章访问数:  372
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-19
  • 修回日期:  2016-11-30
  • 刊出日期:  2017-02-20

基于时域多分辨算法的非球形气溶胶散射特性仿真模拟

  • 1. 解放军理工大学气象海洋学院, 南京 211101;
  • 2. 解放军理工大学, 电磁环境效应与电光工程国家级重点实验室, 南京 210007;
  • 3. 海军航空工程学院, 青岛 266041
  • 通信作者: 高太长, gaotc@gmail.com
    基金项目: 

    国家自然科学基金(批准号:41575025,41575024)资助的课题.

摘要: 非球形气溶胶的散射特性是影响辐射传输模拟准确性的重要因素.为实现非球形、非均质气溶胶散射特性的模拟,基于MRTD(multi-resolution time-domain)方法建立了一个新的气溶胶散射模型.采用MRTD技术实现了近场电磁场的计算;考虑气溶胶的特殊性,推导了基于体积积分方法的近远场外推方法,实现了粒子散射振幅矩阵和穆勒矩阵的仿真;构建了粒子吸收和消光截面的计算模型,实现了粒子积分散射特性的高精度模拟.将MRTD散射模型的结果与Mie理论、T矩阵法进行了对比,验证了模型的准确性;讨论了空间网格粗细对模拟精度的影响,并定量分析了模型的运行效率.结果表明,MRTD散射模型的相函数模拟误差小于8%,其中前向散射方向小于4%;当粒径与入射光波长相当时,消光和散射效率因子的相对误差小于0.1%;空间网格粗细对模拟精度影响显著,当粒子尺度参数小于20时,在相同模拟精度要求下,所需网格尺寸随尺度参数呈先增大后减小的特征.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回