搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子推力器栅极透过率径向分布特性研究

龙建飞 张天平 李娟 贾艳辉

离子推力器栅极透过率径向分布特性研究

龙建飞, 张天平, 李娟, 贾艳辉
PDF
导出引用
导出核心图
  • 栅极系统是离子推力器的主要组件,其透过率特性对推力器的效率和推力具有重要影响.为了进一步优化栅极性能和有效评估离子推力器效率,对离子推力器栅极透过率径向分布进行研究.采用particle-In-Cell-Monte Carlo Collision数值仿真方法对束流引出过程进行了模拟.分析了屏栅、加速栅以及栅极系统的透过率随栅孔引出束流离子数量的变化关系,结合放电室出口离子密度分布,进而分别得到屏栅透过率、加速栅透过率和栅极系统透过率的径向分布特性,最后进行实验验证.研究结果表明:屏栅透过率径向分布具有中心对称性,在推力器中心有最小值,从中心沿着径向逐渐增大;加速栅透过率径向分布与屏栅透过率变化趋势相反;栅极系统透过率受加速栅透过率的影响很小,其径向分布与屏栅透过率径向分布相近;离子推力器栅极总透过率随着束流增大而缓慢减小.研究结果可为离子推力器栅极优化提供参考.
      通信作者: 龙建飞, ljf510@163.com
    • 基金项目: 国家自然科学基金(批准号:61601210)、国家重大基础研究项目(批准号:61××34)和重点实验室基金(批准号:9140C55026150C55013)资助的课题.
    [1]

    Porst J P, Kuhmann J, Kukies R, Leiter H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe Japan, July 4-10, 2015 p2015-b-2901

    [2]

    Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, Japan, July 4-10, 2015 p2015-b-1311

    [3]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901(in Chinese)[陈茂林, 夏广庆, 毛根旺2014物理学报 63 182901]

    [4]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, 2013 p2013-48-1

    [5]

    Chen J J, Zhang T P, Jia Y H, Li X P 2012 High Power Laser and Particle Beams 24 2469(in Chinese)[陈娟娟, 张天平, 贾艳辉, 李小平2012强激光与粒子束流24 2469]

    [6]

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088(in Chinese)[周志成, 王敏, 仲小清, 陈娟娟, 张天平2015真空科学与技术学报35 1088]

    [7]

    Kaufman H R 1999 Plasma Sources Sci. Technol. 8 R1

    [8]

    Brophy J R 1990 Presented at the 21th International Electric Propulsion Conference California, USA, 1990 p90-2655-1

    [9]

    Arakawa Y, Nakano M 1996 Presented at the 32nd Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Vista, USA, 1996 p96-3198-1

    [10]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010

    [11]

    Haag T, Soulas G C 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, Indiana, 2002 p2003-4557-1

    [12]

    Anderson J, Goodfellow K, Polk J, Shotwell R, Rawlin V, Sovey J, Patterson M 1999 Presented at the 35th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences California USA, 1999 p99-2857-1

    [13]

    Chen M L, Xia G Q, Yang Z Y, Zhang B, Xu Z Q, Mao G W 2014 High Voltage Engineering 40 3012(in Chinese)[陈茂林, 夏广庆, 杨正岩, 张斌, 徐宗琦, 毛根旺2014高电压技术40 3012]

    [14]

    Li J, Chu Y C, Cao Y 2012 J. Propul. Technol. 33 131(in Chinese)[李娟, 楚豫川, 曹勇2012推进技术33 131]

    [15]

    Wang M, Gu Z, Xu J L 2013 Vacuum&Cryogenics 19 95(in Chinese)[王蒙, 顾左, 徐金灵2013真空与低温19 95]

    [16]

    Zhong L W, Liu Y, Li J, Gu Z, Jiang H C, Wang H X, Tang H B 2010 Chin. J. Aeronaut. 23 15

    [17]

    Hu W P, Sang C F, Tang T F, Wang D Z, Li M, Jin D Z, Tan X H 2014 Phys. Plasmas 21 033510

    [18]

    Liu H, Wu B, Yu D, Cao Y, Duan P 2010 J. Phys. D:Appl. Phys. 43 165202

    [19]

    Boer P 1997 J. Propul. Power 13 783

    [20]

    Wang J, Polk J, Brophy J, Katz J 2003 J. Propul. Power 19 1192

    [21]

    Herman D A, Gallimore A D 2013 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Florida USA 2013 p2004-3794-1

    [22]

    Zheng M F, Jiang H C 2011 J. Propul. Technol. 32 762(in Chinese)[郑茂繁, 江豪成2011推进技术32 762]

    [23]

    Farnell C C, Williams J D 2010 J. Propul. Power 26 125

  • [1]

    Porst J P, Kuhmann J, Kukies R, Leiter H 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe Japan, July 4-10, 2015 p2015-b-2901

    [2]

    Hutchins M, Simpson H, Palencia Jiménez J 2015 Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium Hyogo-Kobe, Japan, July 4-10, 2015 p2015-b-1311

    [3]

    Chen M L, Xia G Q, Mao G W 2014 Acta Phys. Sin. 63 182901(in Chinese)[陈茂林, 夏广庆, 毛根旺2014物理学报 63 182901]

    [4]

    Zhang T P, Wang X Y, Jiang H C 2013 Presented at the 33th International Electric Propulsion Conference Washington, USA, 2013 p2013-48-1

    [5]

    Chen J J, Zhang T P, Jia Y H, Li X P 2012 High Power Laser and Particle Beams 24 2469(in Chinese)[陈娟娟, 张天平, 贾艳辉, 李小平2012强激光与粒子束流24 2469]

    [6]

    Zhou Z C, Wang M, Zhong X Q, Chen J J, Zhang T P 2015 Chin. J. Vacuum Sci. Technol. 35 1088(in Chinese)[周志成, 王敏, 仲小清, 陈娟娟, 张天平2015真空科学与技术学报35 1088]

    [7]

    Kaufman H R 1999 Plasma Sources Sci. Technol. 8 R1

    [8]

    Brophy J R 1990 Presented at the 21th International Electric Propulsion Conference California, USA, 1990 p90-2655-1

    [9]

    Arakawa Y, Nakano M 1996 Presented at the 32nd Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Vista, USA, 1996 p96-3198-1

    [10]

    Wirz R, Goebel D M 2008 Plasma Sources Sci. Technol. 17 035010

    [11]

    Haag T, Soulas G C 2002 Presented at the 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences Indianapolis, Indiana, 2002 p2003-4557-1

    [12]

    Anderson J, Goodfellow K, Polk J, Shotwell R, Rawlin V, Sovey J, Patterson M 1999 Presented at the 35th Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences California USA, 1999 p99-2857-1

    [13]

    Chen M L, Xia G Q, Yang Z Y, Zhang B, Xu Z Q, Mao G W 2014 High Voltage Engineering 40 3012(in Chinese)[陈茂林, 夏广庆, 杨正岩, 张斌, 徐宗琦, 毛根旺2014高电压技术40 3012]

    [14]

    Li J, Chu Y C, Cao Y 2012 J. Propul. Technol. 33 131(in Chinese)[李娟, 楚豫川, 曹勇2012推进技术33 131]

    [15]

    Wang M, Gu Z, Xu J L 2013 Vacuum&Cryogenics 19 95(in Chinese)[王蒙, 顾左, 徐金灵2013真空与低温19 95]

    [16]

    Zhong L W, Liu Y, Li J, Gu Z, Jiang H C, Wang H X, Tang H B 2010 Chin. J. Aeronaut. 23 15

    [17]

    Hu W P, Sang C F, Tang T F, Wang D Z, Li M, Jin D Z, Tan X H 2014 Phys. Plasmas 21 033510

    [18]

    Liu H, Wu B, Yu D, Cao Y, Duan P 2010 J. Phys. D:Appl. Phys. 43 165202

    [19]

    Boer P 1997 J. Propul. Power 13 783

    [20]

    Wang J, Polk J, Brophy J, Katz J 2003 J. Propul. Power 19 1192

    [21]

    Herman D A, Gallimore A D 2013 Presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences Florida USA 2013 p2004-3794-1

    [22]

    Zheng M F, Jiang H C 2011 J. Propul. Technol. 32 762(in Chinese)[郑茂繁, 江豪成2011推进技术32 762]

    [23]

    Farnell C C, Williams J D 2010 J. Propul. Power 26 125

  • [1] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [2] 刘乃漳, 张雪冰, 姚若河. AlGaN/GaN 高电子迁移率器件外部边缘电容的物理模型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191931
    [3] 刘婉馨, 陈瑞, 刘永杰, 王俊峰, 韩小涛, 杨明. 脉冲强磁场下的电极化测量系统. 物理学报, 2020, 69(5): 057502. doi: 10.7498/aps.69.20191520
    [4] 左富昌, 梅志武, 邓楼楼, 石永强, 贺盈波, 李连升, 周昊, 谢军, 张海力, 孙艳. 多层嵌套掠入射光学系统研制及在轨性能评价. 物理学报, 2020, 69(3): 030702. doi: 10.7498/aps.69.20191446
    [5] 庄志本, 李军, 刘静漪, 陈世强. 基于新的五维多环多翼超混沌系统的图像加密算法. 物理学报, 2020, 69(4): 040502. doi: 10.7498/aps.69.20191342
    [6] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微绕理论将弹簧振子模型退化为耦合模理论. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191505
    [7] 王琳, 魏来, 王正汹. 垂直磁重联平面的驱动流对磁岛链影响的模拟. 物理学报, 2020, 69(5): 059401. doi: 10.7498/aps.69.20191612
    [8] 蒋涛, 任金莲, 蒋戎戎, 陆伟刚. 基于局部加密纯无网格法非线性Cahn-Hilliard方程的模拟. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191829
    [9] 卢超, 陈伟, 罗尹虹, 丁李利, 王勋, 赵雯, 郭晓强, 李赛. 纳米体硅鳍形场效应晶体管单粒子瞬态中的源漏导通现象研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191896
    [10] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [11] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [12] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [13] 杨进, 陈俊, 王福地, 李颖颖, 吕波, 向东, 尹相辉, 张洪明, 符佳, 刘海庆, 臧庆, 储宇奇, 刘建文, 王勋禺, 宾斌, 何梁, 万顺宽, 龚学余, 叶民友. 东方超环上低杂波驱动等离子体环向旋转实验研究. 物理学报, 2020, 69(5): 055201. doi: 10.7498/aps.69.20191716
    [14] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [15] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [16] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [17] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [18] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
  • 引用本文:
    Citation:
计量
  • 文章访问数:  235
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-18
  • 修回日期:  2017-06-08
  • 刊出日期:  2017-08-20

离子推力器栅极透过率径向分布特性研究

  • 1. 兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000
  • 通信作者: 龙建飞, ljf510@163.com
    基金项目: 

    国家自然科学基金(批准号:61601210)、国家重大基础研究项目(批准号:61×

    ×

    34)和重点实验室基金(批准号:9140C55026150C55013)资助的课题.

摘要: 栅极系统是离子推力器的主要组件,其透过率特性对推力器的效率和推力具有重要影响.为了进一步优化栅极性能和有效评估离子推力器效率,对离子推力器栅极透过率径向分布进行研究.采用particle-In-Cell-Monte Carlo Collision数值仿真方法对束流引出过程进行了模拟.分析了屏栅、加速栅以及栅极系统的透过率随栅孔引出束流离子数量的变化关系,结合放电室出口离子密度分布,进而分别得到屏栅透过率、加速栅透过率和栅极系统透过率的径向分布特性,最后进行实验验证.研究结果表明:屏栅透过率径向分布具有中心对称性,在推力器中心有最小值,从中心沿着径向逐渐增大;加速栅透过率径向分布与屏栅透过率变化趋势相反;栅极系统透过率受加速栅透过率的影响很小,其径向分布与屏栅透过率径向分布相近;离子推力器栅极总透过率随着束流增大而缓慢减小.研究结果可为离子推力器栅极优化提供参考.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回