搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非绝热分子动力学的量子路径模拟

李晓克 冯伟

非绝热分子动力学的量子路径模拟

李晓克, 冯伟
PDF
导出引用
导出核心图
  • 基于近期发展的经典-量子混合模拟非绝热分子动力学的量子路径方案,本文对5个典型势能面模型进行了模拟,包括单交叉模型、双交叉模型、拓展耦合模型、哑铃模型以及双弓模型.由于难以在严格意义上得到退相干速率,数值模拟中,我们比较了三个不同的退相干速率公式,包括冻结高斯波包近似退相干速率、能量分辨速率以及力分辨速率.在模拟过程中,我们恰当地处理了势能面跳跃时的能量守恒和力的反向问题.通过与全量子动力学模拟的精确结果进行对比发现,对于结构较简单的势能面模型,三种退相干速率都能得到较好的结果;然而对于较复杂的势能面模型,由于复杂量子干涉的原因,与其他混合经典-量子动力学方案类似,量子路径方案仍然难以得到较准确的结果.如何发展更加有效的混合经典-量子模拟方案,是未来研究的重要课题.
      通信作者: 冯伟, fwphy@tju.edu.cn
    [1]

    Gerber R B, Buch V, Ratner M A 1982 J. Chem. Phys. 77 3022

    [2]

    Micha D A 1983 J. Chem. Phys. 78 7138

    [3]

    Li X S, Tully J C, Schlegel H B, Frisch M J 2005 J. Chem. Phys. 123 084106

    [4]

    Tully J C, Preston P K 1971 J. Chem. Phys. 55 562

    [5]

    Miller W H, George T F 1972 J. Chem. Phys. 56 5637

    [6]

    Kuntz P J, Kendrick J, Whitton W N 1979 Chem. Phys. 38 147

    [7]

    Blais N C, Truhlar D G 1983 J. Chem. Phys. 79 1334

    [8]

    Ali D P, Miller W H 1983 J. Chem. Phys. 78 6640

    [9]

    Tully J C 1990 J. Chem. Phys. 93 1061

    [10]

    Kuntz P J 1991 J. Chem. Phys. 95 141

    [11]

    Webster F, Wang E T, Rossky P J, Friesner R A 1994 J. Chem. Phys. 100 4835

    [12]

    Prezhdo O V, Rossky P J 1997 J. Chem. Phys. 107 825

    [13]

    Zhu C Y, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 120 5543

    [14]

    Zhu C Y, Nangia S, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 121 7658

    [15]

    Feng W, Xu L T, Li X Q, Fang W H, Yan Y J 2014 AIP Adv. 4 077131

    [16]

    Li B, Han K L 2009 J. Phys. Chem. A 113 10189

    [17]

    Li B, Chu T S, Han K L 2010 J. Comput. Chem. 31 362

    [18]

    Yang M H, Huo C Y, Li A Y, Lei Y B, Yu L, Zhu C Y 2017 Phys. Chem. Chem. Phys. 19 12185

    [19]

    Lu J F, Zhou Z N 2016 J. Chem. Phys. 145 124109

    [20]

    Schubert A, Falvo C, Meier C 2016 J. Chem. Phys. 145 054108

    [21]

    Wang L J, Prezhdo O V, Beljonne D 2015 Phys. Chem. Chem. Phys. 17 12395

    [22]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [23]

    Schatz G C 1996 J. Phys. Chem. 100 12839

    [24]

    Zhang J Z H, Dai J, Zhu W 1997 J. Phys. Chem. A 101 2746

    [25]

    Guo H, Yarkony D R 2016 Phys. Chem. Chem. Phys. 18 26335

    [26]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [27]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [28]

    Zhang S B, Wu Y, Wang J G 2016 J. Chem. Phys. 145 224306

    [29]

    Jacobs K, Steck D A 2006 Contemp. Phys. 47 279

    [30]

    Xie B B, Liu L H, Cui G L, Fang W H, Cao J, Feng W, Li X Q 2015 J. Chem. Phys. 143 194107

    [31]

    Akimov A V, Long R, Prezhdo O V 2014 J. Chem. Phys. 140 194107

    [32]

    Zhu C Y, Jasper A W, Truhlar D G 2005 J. Chem. Theory Comput. 1 527

    [33]

    Bedard-Hearn M J, Larsen R E, Schwartz B J 2005 J. Chem. Phys. 123 234106

    [34]

    Prezhdo O V 1999 J. Chem. Phys. 111 8366

    [35]

    Granucci G, Persico M 2007 J. Chem. Phys. 126 134114

    [36]

    Thachuk M, Ivanov M Y, Wardlaw D M 1998 J. Chem. Phys. 109 5747

    [37]

    Heller E J 1981 J. Chem. Phys. 75 2923

    [38]

    Schwartz B J, Bittner E R, Prezhdo O V, Rossky P J 1996 J. Chem. Phys. 104 5942

    [39]

    Lan Z G, Shao J S 2012 Prog. Chem. 24 1105 (in Chinese) [兰峥岗, 邵久书 2012 化学进展 24 1105]

    [40]

    Hammes-Schiffer S, Tully J C 1994 J. Chem. Phys. 101 4657

    [41]

    Subotnik J E 2010 J. Chem. Phys. 132 134112

    [42]

    Subotnik J E, Shenvi N 2011 J. Chem. Phys. 134 024105

  • [1]

    Gerber R B, Buch V, Ratner M A 1982 J. Chem. Phys. 77 3022

    [2]

    Micha D A 1983 J. Chem. Phys. 78 7138

    [3]

    Li X S, Tully J C, Schlegel H B, Frisch M J 2005 J. Chem. Phys. 123 084106

    [4]

    Tully J C, Preston P K 1971 J. Chem. Phys. 55 562

    [5]

    Miller W H, George T F 1972 J. Chem. Phys. 56 5637

    [6]

    Kuntz P J, Kendrick J, Whitton W N 1979 Chem. Phys. 38 147

    [7]

    Blais N C, Truhlar D G 1983 J. Chem. Phys. 79 1334

    [8]

    Ali D P, Miller W H 1983 J. Chem. Phys. 78 6640

    [9]

    Tully J C 1990 J. Chem. Phys. 93 1061

    [10]

    Kuntz P J 1991 J. Chem. Phys. 95 141

    [11]

    Webster F, Wang E T, Rossky P J, Friesner R A 1994 J. Chem. Phys. 100 4835

    [12]

    Prezhdo O V, Rossky P J 1997 J. Chem. Phys. 107 825

    [13]

    Zhu C Y, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 120 5543

    [14]

    Zhu C Y, Nangia S, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 121 7658

    [15]

    Feng W, Xu L T, Li X Q, Fang W H, Yan Y J 2014 AIP Adv. 4 077131

    [16]

    Li B, Han K L 2009 J. Phys. Chem. A 113 10189

    [17]

    Li B, Chu T S, Han K L 2010 J. Comput. Chem. 31 362

    [18]

    Yang M H, Huo C Y, Li A Y, Lei Y B, Yu L, Zhu C Y 2017 Phys. Chem. Chem. Phys. 19 12185

    [19]

    Lu J F, Zhou Z N 2016 J. Chem. Phys. 145 124109

    [20]

    Schubert A, Falvo C, Meier C 2016 J. Chem. Phys. 145 054108

    [21]

    Wang L J, Prezhdo O V, Beljonne D 2015 Phys. Chem. Chem. Phys. 17 12395

    [22]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [23]

    Schatz G C 1996 J. Phys. Chem. 100 12839

    [24]

    Zhang J Z H, Dai J, Zhu W 1997 J. Phys. Chem. A 101 2746

    [25]

    Guo H, Yarkony D R 2016 Phys. Chem. Chem. Phys. 18 26335

    [26]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [27]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [28]

    Zhang S B, Wu Y, Wang J G 2016 J. Chem. Phys. 145 224306

    [29]

    Jacobs K, Steck D A 2006 Contemp. Phys. 47 279

    [30]

    Xie B B, Liu L H, Cui G L, Fang W H, Cao J, Feng W, Li X Q 2015 J. Chem. Phys. 143 194107

    [31]

    Akimov A V, Long R, Prezhdo O V 2014 J. Chem. Phys. 140 194107

    [32]

    Zhu C Y, Jasper A W, Truhlar D G 2005 J. Chem. Theory Comput. 1 527

    [33]

    Bedard-Hearn M J, Larsen R E, Schwartz B J 2005 J. Chem. Phys. 123 234106

    [34]

    Prezhdo O V 1999 J. Chem. Phys. 111 8366

    [35]

    Granucci G, Persico M 2007 J. Chem. Phys. 126 134114

    [36]

    Thachuk M, Ivanov M Y, Wardlaw D M 1998 J. Chem. Phys. 109 5747

    [37]

    Heller E J 1981 J. Chem. Phys. 75 2923

    [38]

    Schwartz B J, Bittner E R, Prezhdo O V, Rossky P J 1996 J. Chem. Phys. 104 5942

    [39]

    Lan Z G, Shao J S 2012 Prog. Chem. 24 1105 (in Chinese) [兰峥岗, 邵久书 2012 化学进展 24 1105]

    [40]

    Hammes-Schiffer S, Tully J C 1994 J. Chem. Phys. 101 4657

    [41]

    Subotnik J E 2010 J. Chem. Phys. 132 134112

    [42]

    Subotnik J E, Shenvi N 2011 J. Chem. Phys. 134 024105

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1670
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-08-05

非绝热分子动力学的量子路径模拟

  • 1. 天津大学物理系, 天津 300350
  • 通信作者: 冯伟, fwphy@tju.edu.cn

摘要: 基于近期发展的经典-量子混合模拟非绝热分子动力学的量子路径方案,本文对5个典型势能面模型进行了模拟,包括单交叉模型、双交叉模型、拓展耦合模型、哑铃模型以及双弓模型.由于难以在严格意义上得到退相干速率,数值模拟中,我们比较了三个不同的退相干速率公式,包括冻结高斯波包近似退相干速率、能量分辨速率以及力分辨速率.在模拟过程中,我们恰当地处理了势能面跳跃时的能量守恒和力的反向问题.通过与全量子动力学模拟的精确结果进行对比发现,对于结构较简单的势能面模型,三种退相干速率都能得到较好的结果;然而对于较复杂的势能面模型,由于复杂量子干涉的原因,与其他混合经典-量子动力学方案类似,量子路径方案仍然难以得到较准确的结果.如何发展更加有效的混合经典-量子模拟方案,是未来研究的重要课题.

English Abstract

参考文献 (42)

目录

    /

    返回文章
    返回