搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递

苏小娜 万英 周芷萱 吐沙姑 阿不都吾甫 胡莲莲 艾尔肯 斯地克

Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递

苏小娜, 万英, 周芷萱, 吐沙姑, 阿不都吾甫, 胡莲莲, 艾尔肯, 斯地克
PDF
导出引用
导出核心图
  • 利用高温固相法合成Na2CaSiO4:Sm3+,Eu3+系列荧光粉末,研究了Sm3+和Eu3+掺杂对Na2CaSiO4晶体结构的影响、材料发光特性以及存在的能量传递现象.X射线衍射结果表明Sm3+和Eu3+单掺及共掺样品均为单相的Na2CaSiO4结构,晶体结构没有改变.Na2CaSiO4:Sm3+荧光样品在404 nm激发波长下呈现峰峰值为602 nm的橙红色荧光,来源于4G5/2→6H7/2跃迁.Na2CaSiO4:Eu3+荧光样品在395 nm激发波长下发射出峰峰值为613 nm的红色荧光.对光谱和荧光寿命的测试和分析结果表明Sm3+与Eu3+之间存在能量传递,通过理论计算得到Sm3+和Eu3+之间的能量传递临界距离为1.36 nm,相互作用形式为电四极-电四极相互作用.随着Eu3+掺杂浓度的增加,能量传递效率也逐渐提高至20.6%.
      通信作者: 艾尔肯, aierkenjiang@sina.com ; 斯地克, aierkenjiang@sina.com
    • 基金项目: 国家自然科学基金(批准号:11464045)资助的课题.
    [1]

    Barsoum M W 2000 Prog. Solid State Ch. 28 201

    [2]

    Pietzka M A, Schuster J C 1994 J. Phase Equilib. 15 392

    [3]

    Nag A, Kutty T P N 2005 Mater. Chem. Phys. 91 524

    [4]

    Jiao H Y, Wang Y H 2010 Apply Phys. B 98 423

    [5]

    Natarajan V, Murthy K V R 2005 Solid State Commun. 134 261

    [6]

    Shi Y R, Yang Z, Wang W, Zhu G, Wang Y 2011 Mater. Res. Bull. 46 1148

    [7]

    Zhuo F P, Zhang W, Huo J M, Zhao Y L, Wu Y, Ding X 2012 China. J. Lumin. 33 238 (in Chinese)[卓芳平, 张伟, 火军明, 赵玉亮, 吴垠, 丁鑫 2012 发光学报 33 238]

    [8]

    Xie M B, Li Y, Li R 2013 J. Lumin. 136 303

    [9]

    Liu Q B, Liu Y, Ding Y, Peng Z, Yu Q, Tian X 2014 J. Sol. Gel. Sci. Techn. 71 276

    [10]

    Wang Z, Lou S, Li P 2014 J. Alloy Compd. 586 536

    [11]

    Min X, Huang Z, Fang M, Liu Y G, Tang C, Wu X 2014 Inorg. Chem. 53 60605

    [12]

    Zhen Xing F U, Liu B R, Yang B X 2016 Spectrosc Spectr. Anal. 36 2686

    [13]

    Park W J, Jung M K, Masaki T, Im S J, Yoon D H 2008 Mater. Sci. Eng. 146 95

    [14]

    Li P, Xu Z, Zhao S, Zhang F, Wang Y 2012 Mater. Res. Bull. 47 3825

    [15]

    Hachani S, Moine B, El-Akrmi A, Férid M 2010 J. Lumin. 130 1774

    [16]

    Naresh V, Rudramadevi B H, Buddhudu S 2015 J. Alloy Compd. 632 59

    [17]

    Gong W L, Zhong R X, Qi J Q, Liu Z R, Zhang X Y (in Chinese)[龚文丽, 钟瑞霞, 齐建全, 刘自然, 张晓燕 2015 人工晶体学报 44 3280]

    [18]

    Lin H, Yang D L, Liu G S, Ma T A, Zhai B, An Q D 2005 J. Lumin. 113 121

    [19]

    Daldosso M, Falcomer D, Speghini A, Ghigna P, Bettinelli M 2008 Opt. Mater. 30 1162

    [20]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids. 64 841

    [21]

    Xie M B, Pan R K 2013 J. Alloy Compd. 551 48

    [22]

    Huang D, Zhou Y, Xu W, Yang Z, Liu Z, Hong M, Lin Y, Yu J 2013 J. Alloy Compd. 554 312

    [23]

    Dexter D, Schulman J H 1954 J. Chem. Phys. 22 1063

    [24]

    van Uitert L G 1971 J. Lumin. 4 1

    [25]

    Blass G 1969 Philips Res. Rep. 24 131

    [26]

    Yang Z P, Yang G W, Wang S L, Tian J, Li P L, Li X 2008 Acta Phys. Sin. 57 581 (in Chinese)[杨志平, 杨广伟, 王少丽, 田晶, 李盼来, 李旭 2008 物理学报 57 581]

    [27]

    Xiong X B, Yuan X M, Liu J C, Song J Q 2015 Acta Phys. Sin. 64 017801 (in Chinese)[熊晓波, 袁曦明, 刘金存, 宋江齐 2015 物理学报 64 017801]

  • [1]

    Barsoum M W 2000 Prog. Solid State Ch. 28 201

    [2]

    Pietzka M A, Schuster J C 1994 J. Phase Equilib. 15 392

    [3]

    Nag A, Kutty T P N 2005 Mater. Chem. Phys. 91 524

    [4]

    Jiao H Y, Wang Y H 2010 Apply Phys. B 98 423

    [5]

    Natarajan V, Murthy K V R 2005 Solid State Commun. 134 261

    [6]

    Shi Y R, Yang Z, Wang W, Zhu G, Wang Y 2011 Mater. Res. Bull. 46 1148

    [7]

    Zhuo F P, Zhang W, Huo J M, Zhao Y L, Wu Y, Ding X 2012 China. J. Lumin. 33 238 (in Chinese)[卓芳平, 张伟, 火军明, 赵玉亮, 吴垠, 丁鑫 2012 发光学报 33 238]

    [8]

    Xie M B, Li Y, Li R 2013 J. Lumin. 136 303

    [9]

    Liu Q B, Liu Y, Ding Y, Peng Z, Yu Q, Tian X 2014 J. Sol. Gel. Sci. Techn. 71 276

    [10]

    Wang Z, Lou S, Li P 2014 J. Alloy Compd. 586 536

    [11]

    Min X, Huang Z, Fang M, Liu Y G, Tang C, Wu X 2014 Inorg. Chem. 53 60605

    [12]

    Zhen Xing F U, Liu B R, Yang B X 2016 Spectrosc Spectr. Anal. 36 2686

    [13]

    Park W J, Jung M K, Masaki T, Im S J, Yoon D H 2008 Mater. Sci. Eng. 146 95

    [14]

    Li P, Xu Z, Zhao S, Zhang F, Wang Y 2012 Mater. Res. Bull. 47 3825

    [15]

    Hachani S, Moine B, El-Akrmi A, Férid M 2010 J. Lumin. 130 1774

    [16]

    Naresh V, Rudramadevi B H, Buddhudu S 2015 J. Alloy Compd. 632 59

    [17]

    Gong W L, Zhong R X, Qi J Q, Liu Z R, Zhang X Y (in Chinese)[龚文丽, 钟瑞霞, 齐建全, 刘自然, 张晓燕 2015 人工晶体学报 44 3280]

    [18]

    Lin H, Yang D L, Liu G S, Ma T A, Zhai B, An Q D 2005 J. Lumin. 113 121

    [19]

    Daldosso M, Falcomer D, Speghini A, Ghigna P, Bettinelli M 2008 Opt. Mater. 30 1162

    [20]

    Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids. 64 841

    [21]

    Xie M B, Pan R K 2013 J. Alloy Compd. 551 48

    [22]

    Huang D, Zhou Y, Xu W, Yang Z, Liu Z, Hong M, Lin Y, Yu J 2013 J. Alloy Compd. 554 312

    [23]

    Dexter D, Schulman J H 1954 J. Chem. Phys. 22 1063

    [24]

    van Uitert L G 1971 J. Lumin. 4 1

    [25]

    Blass G 1969 Philips Res. Rep. 24 131

    [26]

    Yang Z P, Yang G W, Wang S L, Tian J, Li P L, Li X 2008 Acta Phys. Sin. 57 581 (in Chinese)[杨志平, 杨广伟, 王少丽, 田晶, 李盼来, 李旭 2008 物理学报 57 581]

    [27]

    Xiong X B, Yuan X M, Liu J C, Song J Q 2015 Acta Phys. Sin. 64 017801 (in Chinese)[熊晓波, 袁曦明, 刘金存, 宋江齐 2015 物理学报 64 017801]

  • [1] 汪静丽, 陈子玉, 陈鹤鸣. 基于Si3N4/SiNx/Si3N4三明治结构的偏振无关1 × 2多模干涉型解复用器的设计. 物理学报, 2020, 69(5): 054206. doi: 10.7498/aps.69.20191449
    [2] 刘祥, 米文博. Verwey相变处Fe3O4的结构、磁性和电输运特性. 物理学报, 2020, 69(4): 040505. doi: 10.7498/aps.69.20191763
    [3] 刘丽, 刘杰, 曾健, 翟鹏飞, 张胜霞, 徐丽君, 胡培培, 李宗臻, 艾文思. 快重离子辐照对YBa2Cu3O7-δ薄膜微观结构及载流特性的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191914
    [4] 梁琦, 王如志, 杨孟骐, 王长昊, 刘金伟. Al2O3衬底无催化剂生长GaN纳米线及其光学性能研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191923
    [5] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能. 物理学报, 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [6] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [7] 白家豪, 郭建刚. 石墨烯/柔性基底复合结构双向界面切应力传递问题的理论研究. 物理学报, 2020, 69(5): 056201. doi: 10.7498/aps.69.20191730
    [8] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [9] 张雅男, 詹楠, 邓玲玲, 陈淑芬. 利用银纳米立方增强效率的多层溶液加工白光有机发光二极管. 物理学报, 2020, 69(4): 047801. doi: 10.7498/aps.69.20191526
    [10] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [11] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
  • 引用本文:
    Citation:
计量
  • 文章访问数:  270
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-27
  • 修回日期:  2017-07-25
  • 刊出日期:  2017-12-05

Na2CaSiO4:Sm3+,Eu3+荧光粉的发光特性和能量传递

    基金项目: 

    国家自然科学基金(批准号:11464045)资助的课题.

摘要: 利用高温固相法合成Na2CaSiO4:Sm3+,Eu3+系列荧光粉末,研究了Sm3+和Eu3+掺杂对Na2CaSiO4晶体结构的影响、材料发光特性以及存在的能量传递现象.X射线衍射结果表明Sm3+和Eu3+单掺及共掺样品均为单相的Na2CaSiO4结构,晶体结构没有改变.Na2CaSiO4:Sm3+荧光样品在404 nm激发波长下呈现峰峰值为602 nm的橙红色荧光,来源于4G5/2→6H7/2跃迁.Na2CaSiO4:Eu3+荧光样品在395 nm激发波长下发射出峰峰值为613 nm的红色荧光.对光谱和荧光寿命的测试和分析结果表明Sm3+与Eu3+之间存在能量传递,通过理论计算得到Sm3+和Eu3+之间的能量传递临界距离为1.36 nm,相互作用形式为电四极-电四极相互作用.随着Eu3+掺杂浓度的增加,能量传递效率也逐渐提高至20.6%.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回