搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拓扑声子与声子霍尔效应

邢玉恒 徐锡方 张力发

拓扑声子与声子霍尔效应

邢玉恒, 徐锡方, 张力发
PDF
导出引用
  • 拓扑学与物理的结合是近几十年物理学蓬勃发展的一个新领域,它不仅活跃在量子场理论以及高能物理中,更广泛地存在于凝聚态物理体系中,包括量子(反常、自旋)霍尔效应和拓扑绝缘体(超导体)等.声子是凝聚态体系中热输运的主要载体;最近由于各种声子器件的发现,声子学得到了广泛的关注.本文介绍了声子的拓扑性质以及声子的霍尔效应现象,分别评述了在破坏时间反演对称、破坏空间反演对称、以及同时破坏时间和空间反演对称三种情况下所产生的声子霍尔效应、声子谷霍尔效应等相关物理研究进展.最后对拓扑学在其他声学体系中的应用做了简单介绍,并进一步讨论了其未来的发展方向.
      通信作者: 张力发, phyzlf@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574154)资助的课题.
    [1]

    Berry M V 1984 Math. Phys. Sci. 392 45

    [2]

    Wilczek F, Shapere A 1989 Geometric Phases Phys. 5 05857

    [3]

    Prabhakar S, Melnik R, Bonilla L L 2014 Phys. Rev. B 89 245310

    [4]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [5]

    Karplus R, Luttinger J M 1954 Phys. Rev. 95 1154

    [6]

    Zeng C, Yao Y, Niu Q, Weitering H H 2006 Phys. Rev. Lett. 96 037204

    [7]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [8]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [9]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [10]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [11]

    Li B, Wang L, Casati G 2006 Appl. Phys. Lett. 88 143501

    [12]

    Rikken G L J A, Strohm C, Wyder P 2002 Phys. Rev. Lett. 89 133005

    [13]

    Inyushkin A V, Taldenkov A N 2007 JETP Lett. 86 379

    [14]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [15]

    Zhang L, Ren J, Wang J S, Li B W 2010 Phys. Rev. Lett. 105 225901

    [16]

    Qin T, Zhou J, Shi J 2012 Phys. Rev. B 86 104305

    [17]

    Zhang L, Niu Q 2015 Phys. Rev. Lett. 115 115502

    [18]

    Zhang L 2016 New J. Phys. 18 103039

    [19]

    Liu Y, Xu Y, Duan W 2017 arXiv preprint arXiv:1707.07142

    [20]

    Zhou J H 2012 Ph. D. Dissertation (Beijing: Institute of Theoretical Physics, Chinese Academy of Sciences) (in Chinese) [周建辉 2012 博士学位论文 (北京: 中国科学院 理论物理研究所)]

    [21]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Modern Phys. 82 1539

    [22]

    Kagan Y, Maksimov L A 2008 Phys. Rev. Lett. 100 145902

    [23]

    Wang J S, Zhang L 2009 Phys. Rev. B 80 012301

    [24]

    Zhang L 2011 Ph. D. Dissertation (Singapore: National University of Singapore)

    [25]

    Holz A 1972 Nuovo Cimento B 9 83

    [26]

    Strohm C, Rikken G, Wyder P 2005 Phys. Rev. Lett. 95 155901

    [27]

    Kronig R L 1939 Physica 6 33

    [28]

    van Vleck J H 1940 Phys. Rev. 57 426

    [29]

    Wang L and Li B 2007 Phys. Rev. Lett. 99 177208

    [30]

    Zhang L, Ren J, Wang J S, Li B W 2011 J. Phys. Condens. Matter 23 305402

    [31]

    Zhang L, Wang J S, Li B 2009 New J. Phys. 11 113038

    [32]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297

    [33]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [34]

    Zeng H L, Cui X D 2016 Acta Phys. Sin. 45 505

    [35]

    Chang M C, Niu Q 1996 Phys. Rev. B 53 7010

    [36]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [37]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [38]

    Gorbachev R V, Song S J C, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [39]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [40]

    Hirschberger M, Chisnell R, Young S, Lee N P 2015 Phys. Rev. Lett. 115 106603

    [41]

    Heinonen O, Taylor P L, Girvin S M 1984 Phys. Rev. B 30 3016

    [42]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nature Phys. 10 343

    [43]

    Rycerz A, Tworzydlo J, Beenakker C W J 2007 Europhys. Lett. 79 57003

    [44]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2016 Nature Phys. 13 369

    [45]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [46]

    Kane C L, Lubensky T C 2013 arXiv preprint arXiv:1308.0554

    [47]

    Ssstrunk R, Huber S D 2015 Science 349 47

    [48]

    Wang P, Lu L, Bertoldi K 2015 Phys. Rev. Lett. 115 104302

  • [1]

    Berry M V 1984 Math. Phys. Sci. 392 45

    [2]

    Wilczek F, Shapere A 1989 Geometric Phases Phys. 5 05857

    [3]

    Prabhakar S, Melnik R, Bonilla L L 2014 Phys. Rev. B 89 245310

    [4]

    Thouless D J, Kohmoto M, Nightingale M P, den Nijs M 1982 Phys. Rev. Lett. 49 405

    [5]

    Karplus R, Luttinger J M 1954 Phys. Rev. 95 1154

    [6]

    Zeng C, Yao Y, Niu Q, Weitering H H 2006 Phys. Rev. Lett. 96 037204

    [7]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [8]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [9]

    Li B, Wang L, Casati G 2004 Phys. Rev. Lett. 93 184301

    [10]

    Chang C W, Okawa D, Majumdar A, Zettl A 2006 Science 314 1121

    [11]

    Li B, Wang L, Casati G 2006 Appl. Phys. Lett. 88 143501

    [12]

    Rikken G L J A, Strohm C, Wyder P 2002 Phys. Rev. Lett. 89 133005

    [13]

    Inyushkin A V, Taldenkov A N 2007 JETP Lett. 86 379

    [14]

    Sheng L, Sheng D N, Ting C S 2006 Phys. Rev. Lett. 96 155901

    [15]

    Zhang L, Ren J, Wang J S, Li B W 2010 Phys. Rev. Lett. 105 225901

    [16]

    Qin T, Zhou J, Shi J 2012 Phys. Rev. B 86 104305

    [17]

    Zhang L, Niu Q 2015 Phys. Rev. Lett. 115 115502

    [18]

    Zhang L 2016 New J. Phys. 18 103039

    [19]

    Liu Y, Xu Y, Duan W 2017 arXiv preprint arXiv:1707.07142

    [20]

    Zhou J H 2012 Ph. D. Dissertation (Beijing: Institute of Theoretical Physics, Chinese Academy of Sciences) (in Chinese) [周建辉 2012 博士学位论文 (北京: 中国科学院 理论物理研究所)]

    [21]

    Nagaosa N, Sinova J, Onoda S, MacDonald A H, Ong N P 2010 Rev. Modern Phys. 82 1539

    [22]

    Kagan Y, Maksimov L A 2008 Phys. Rev. Lett. 100 145902

    [23]

    Wang J S, Zhang L 2009 Phys. Rev. B 80 012301

    [24]

    Zhang L 2011 Ph. D. Dissertation (Singapore: National University of Singapore)

    [25]

    Holz A 1972 Nuovo Cimento B 9 83

    [26]

    Strohm C, Rikken G, Wyder P 2005 Phys. Rev. Lett. 95 155901

    [27]

    Kronig R L 1939 Physica 6 33

    [28]

    van Vleck J H 1940 Phys. Rev. 57 426

    [29]

    Wang L and Li B 2007 Phys. Rev. Lett. 99 177208

    [30]

    Zhang L, Ren J, Wang J S, Li B W 2011 J. Phys. Condens. Matter 23 305402

    [31]

    Zhang L, Wang J S, Li B 2009 New J. Phys. 11 113038

    [32]

    Onose Y, Ideue T, Katsura H, Shiomi Y, Nagaosa N, Tokura Y 2010 Science 329 297

    [33]

    Xiao D, Yao W, Niu Q 2007 Phys. Rev. Lett. 99 236809

    [34]

    Zeng H L, Cui X D 2016 Acta Phys. Sin. 45 505

    [35]

    Chang M C, Niu Q 1996 Phys. Rev. B 53 7010

    [36]

    Xiao D, Chang M C, Niu Q 2010 Rev. Mod. Phys. 82 1959

    [37]

    Mak K F, McGill K L, Park J, McEuen P L 2014 Science 344 1489

    [38]

    Gorbachev R V, Song S J C, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S, Geim A K 2014 Science 346 448

    [39]

    Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E, Liu B L, Feng J 2012 Nat. Commun. 3 887

    [40]

    Hirschberger M, Chisnell R, Young S, Lee N P 2015 Phys. Rev. Lett. 115 106603

    [41]

    Heinonen O, Taylor P L, Girvin S M 1984 Phys. Rev. B 30 3016

    [42]

    Xu X D, Yao W, Xiao D, Heinz T F 2014 Nature Phys. 10 343

    [43]

    Rycerz A, Tworzydlo J, Beenakker C W J 2007 Europhys. Lett. 79 57003

    [44]

    Lu J Y, Qiu C Y, Ye L P, Fan X Y, Ke M Z, Zhang F, Liu Z Y 2016 Nature Phys. 13 369

    [45]

    Lu J Y, Qiu C Y, Ke M Z, Liu Z Y 2016 Phys. Rev. Lett. 116 093901

    [46]

    Kane C L, Lubensky T C 2013 arXiv preprint arXiv:1308.0554

    [47]

    Ssstrunk R, Huber S D 2015 Science 349 47

    [48]

    Wang P, Lu L, Bertoldi K 2015 Phys. Rev. Lett. 115 104302

  • [1] 梁九卿, 李伯臧, 李玲. 动边界量子含时谐振子系统的Lewis-Riesenfeld相位与Berry相位. 物理学报, 2001, 50(11): 2077-2082. doi: 10.7498/aps.50.2077
    [2] 葛琳, 季沛勇. 等离子体波背景下的光子Berry相位. 物理学报, 2009, 58(1): 347-353. doi: 10.7498/aps.58.347
    [3] 王浩, 栾军华, 岳景朝, 刘国权, 秦湘阁. 晶粒棱长、尺寸与拓扑学特征之间关系的Monte Carlo仿真研究. 物理学报, 2009, 58(13): 132-S136. doi: 10.7498/aps.58.132
    [4] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位. 物理学报, 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [5] 刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农. 基于Pancharatnam-Berry相位和动力学相位调控纵向光子自旋霍尔效应. 物理学报, 2019, 68(6): 064201. doi: 10.7498/aps.68.20182004
    [6] 刘登云. 具有含时频率和边界条件的谐振子量子态的Berry相位. 物理学报, 1998, 47(8): 1233-1240. doi: 10.7498/aps.47.1233
    [7] 李志坚, 程建刚, 梁九卿. 有限维希尔伯特空间含时谐振子的时间演化及Berry相位. 物理学报, 2000, 49(1): 11-16. doi: 10.7498/aps.49.11
    [8] 刘登云. 含时边界条件和Berry相位. 物理学报, 1993, 42(5): 705-710. doi: 10.7498/aps.42.705
    [9] 陈成明, 张全. 量子Hall效应与Berry相因数. 物理学报, 1991, 40(3): 345-352. doi: 10.7498/aps.40.345
    [10] 李伯臧, 吴建华. 绝热定理表述的改进以及Berry相位和Wilczek-Zee算符导出的简化. 物理学报, 1995, 44(1): 16-23. doi: 10.7498/aps.44.16
    [11] 陈欢, 凌晓辉, 何武光, 李钱光, 易煦农. 基于Pancharatnam-Berry相位调控产生贝塞尔光束. 物理学报, 2017, 66(4): 044203. doi: 10.7498/aps.66.044203
    [12] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [13] 高孝纯, 许晶波, 钱铁铮. 广义含时谐振子的精确解和Berry相因数. 物理学报, 1991, 40(1): 25-32. doi: 10.7498/aps.40.25
    [14] 陈成明, 徐东辉. 超相干态与Berry相因数. 物理学报, 1992, 41(4): 529-534. doi: 10.7498/aps.41.529
    [15] 张润东, 阎凤利, 李伯臧. 由含时边界条件的两种有限深量子势阱构造的哈密顿算符和它们的复BERRY相位. 物理学报, 1998, 47(10): 1585-1599. doi: 10.7498/aps.47.1585
    [16] 刘昊迪. Born-Oppenheimer近似下谐振子场驱动电磁模系统的Berry相和Hannay角. 物理学报, 2013, 62(10): 100302. doi: 10.7498/aps.62.100302
    [17] 侯邦品, 余万伦, 李伯臧. Berry型量子纯态与Berry型量子系统. 物理学报, 1998, 47(5): 712-717. doi: 10.7498/aps.47.712
    [18] 杨志安. 非线性系统的非对角Berry相. 物理学报, 2013, 62(11): 110302. doi: 10.7498/aps.62.110302
    [19] 辛俊丽, 沈俊霞. 谐振子系统的量子-经典轨道、Berry相及Hannay角. 物理学报, 2015, 64(24): 240302. doi: 10.7498/aps.64.240302
    [20] 陈泽国, 吴莹. 声子晶体中的多重拓扑相. 物理学报, 2017, 66(22): 227804. doi: 10.7498/aps.66.227804
  • 引用本文:
    Citation:
计量
  • 文章访问数:  1695
  • PDF下载量:  861
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-28
  • 修回日期:  2017-11-06
  • 刊出日期:  2017-11-05

拓扑声子与声子霍尔效应

  • 1. 南京师范大学物理科学与技术学院, 南京 210023
  • 通信作者: 张力发, phyzlf@njnu.edu.cn
    基金项目: 

    国家自然科学基金(批准号:11574154)资助的课题.

摘要: 拓扑学与物理的结合是近几十年物理学蓬勃发展的一个新领域,它不仅活跃在量子场理论以及高能物理中,更广泛地存在于凝聚态物理体系中,包括量子(反常、自旋)霍尔效应和拓扑绝缘体(超导体)等.声子是凝聚态体系中热输运的主要载体;最近由于各种声子器件的发现,声子学得到了广泛的关注.本文介绍了声子的拓扑性质以及声子的霍尔效应现象,分别评述了在破坏时间反演对称、破坏空间反演对称、以及同时破坏时间和空间反演对称三种情况下所产生的声子霍尔效应、声子谷霍尔效应等相关物理研究进展.最后对拓扑学在其他声学体系中的应用做了简单介绍,并进一步讨论了其未来的发展方向.

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回