搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光强与吸收率非线性同步拟合的吸收光谱测量方法

李宁 吕晓静 翁春生

基于光强与吸收率非线性同步拟合的吸收光谱测量方法

李宁, 吕晓静, 翁春生
PDF
导出引用
导出核心图
  • 针对高压环境吸收谱线加宽以及波分复用技术合波透射信号分析测试难题,提出利用非线性拟合方法对激光吸收光谱测量中激光强度与吸收光谱进行耦合求解.建立激光强度非线性变化与多谱线吸收拟合函数关系,解决了特殊环境下无法获取光谱基线的难题,实现了波分复用过程合波后光谱信号的分离与诊断.通过仿真验证该方法的可行性,分析计算了激光器特性和特征谱线位置等因素对拟合结果的影响.搭建实验台实现了1–10 atm变压力环境下6330–6337 cm-1波段CO2吸收光谱叠加信号的诊断分析.对气液两相脉冲爆轰过程中7185.6 cm-1与7444.35 cm-1波段波分复用光谱信号进行测试与拟合,无需分光设备实现了耦合光路分离和温度计算.研究结果对激光吸收光谱技术在高压环境以及燃烧环境下波分复用技术的发展具有重要意义.
      通信作者: 李宁, phoenixkyo@163.com
    • 基金项目: 国家自然科学基金(批准号:11372141,11472138)资助的课题.
    [1]

    Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651 (in Chinese) [张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651]

    [2]

    Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516 (in Chinese) [杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516]

    [3]

    L X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624 (in Chinese) [吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624]

    [4]

    Hanson R K 2011 P. Combust. Inst. 33 1

    [5]

    Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407

    [6]

    Sanders S T, Mattison D W, Jeffries J B, Hanson R K 2001 Opt. Lett. 26 1568

    [7]

    Nagali V, Herbon J T, Horning D C, Davidson D F, Hanson R K 1999 Appl. Opt. 38 6942

    [8]

    Wang J, Sanders S T, Jeffries J B, Hanson R K 2001 Appl. Phys. B 72 865

    [9]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052

    [10]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Opt. 43 6500

    [11]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740

    [12]

    Farooq A, Jeffries J B, Hanson R K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 949

    [13]

    Rieker G, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51

    [14]

    Rieker G, Li H, Liu X, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S 2007 Meas. Sci. Technol. 18 1195

    [15]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [16]

    Cai T D, Gao G Z, Wang M R, Wang G S, Gao X M 2014 Spectrosc. Spect. Anal. 34 1769 (in Chinese) [蔡廷栋, 高光珍, 王敏锐, 王贵师, 高晓明 2014 光谱学与光谱分析 34 1769]

    [17]

    Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2016 Appl. Spec. 70 474

    [18]

    Li N, Weng C S 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 物理学报 59 6914]

    [19]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503

    [20]

    Teichert H, Fernholtz T, Ebert V 2003 Appl. Opt. 42 2043

    [21]

    Mattison D W, Liu J T C, Jeffries J B, Hanson R K 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10-13, 2005 p224

    [22]

    Sanders S T, Jenkins T P, Hanson R K 2000 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville, AL, July 16-19, 2000 p3592

    [23]

    Hinckley K M, Jeffries J B, Hanson R K 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5-8, 2004 p713

    [24]

    Watson G A 2007 J. Comput. Appl. Math. 208 331

    [25]

    Fan J Y, Pan J Y 2009 Appl. Math. Comput. 207 351

  • [1]

    Zhang W, Shen Y, Yu X L, Yao Z P, Wang M, Zeng H, Li F, Zhang S H 2015 J. Propul. Technol. 36 651 (in Chinese) [张伟, 沈岩, 余西龙, 姚兆普, 王梦, 曾徽, 李飞, 张少华 2015 推进技术 36 651]

    [2]

    Yang B, Qi Z M, Yang H N, Huang B, Liu P J 2015 J. Combust. Sci. Technol. 21 516 (in Chinese) [杨斌, 齐宗满, 杨荟楠, 黄斌, 刘佩进 2015 燃烧科学与技术 21 516]

    [3]

    L X J, Li N, Weng C S 2016 Spectrosc. Spect. Anal. 36 624 (in Chinese) [吕晓静, 李宁, 翁春生 2016 光谱学与光谱分析 36 624]

    [4]

    Hanson R K 2011 P. Combust. Inst. 33 1

    [5]

    Li H, Farooq A, Jeffries J B, Hanson R K 2007 Appl. Phys. B 89 407

    [6]

    Sanders S T, Mattison D W, Jeffries J B, Hanson R K 2001 Opt. Lett. 26 1568

    [7]

    Nagali V, Herbon J T, Horning D C, Davidson D F, Hanson R K 1999 Appl. Opt. 38 6942

    [8]

    Wang J, Sanders S T, Jeffries J B, Hanson R K 2001 Appl. Phys. B 72 865

    [9]

    Li H J, Rieker G B, Liu X, Jeffries J B, Hanson R K 2006 Appl. Opt. 45 1052

    [10]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Opt. 43 6500

    [11]

    Farooq A, Jeffries J B, Hanson R K 2009 Appl. Opt. 48 6740

    [12]

    Farooq A, Jeffries J B, Hanson R K 2010 J. Quant. Spectrosc. Radiat. Transfer 111 949

    [13]

    Rieker G, Jeffries J B, Hanson R K 2009 Appl. Phys. B 94 51

    [14]

    Rieker G, Li H, Liu X, Jeffries J B, Hanson R K, Allen M G, Wehe S D, Mulhall P A, Kindle H S 2007 Meas. Sci. Technol. 18 1195

    [15]

    Goldenstein C S, Spearrin R M, Jeffries J B, Hanson R K 2014 Appl. Phys. B 116 705

    [16]

    Cai T D, Gao G Z, Wang M R, Wang G S, Gao X M 2014 Spectrosc. Spect. Anal. 34 1769 (in Chinese) [蔡廷栋, 高光珍, 王敏锐, 王贵师, 高晓明 2014 光谱学与光谱分析 34 1769]

    [17]

    Cai T D, Gao G Z, Wang M R, Wang G S, Liu Y, Gao X M 2016 Appl. Spec. 70 474

    [18]

    Li N, Weng C S 2010 Acta Phys. Sin. 59 6914 (in Chinese) [李宁, 翁春生 2010 物理学报 59 6914]

    [19]

    Liu J T C, Jeffries J B, Hanson R K 2004 Appl. Phys. B 78 503

    [20]

    Teichert H, Fernholtz T, Ebert V 2003 Appl. Opt. 42 2043

    [21]

    Mattison D W, Liu J T C, Jeffries J B, Hanson R K 2005 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 10-13, 2005 p224

    [22]

    Sanders S T, Jenkins T P, Hanson R K 2000 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Huntsville, AL, July 16-19, 2000 p3592

    [23]

    Hinckley K M, Jeffries J B, Hanson R K 2004 42nd AIAA Aerospace Sciences Meeting and Exhibit Reno, Nevada, January 5-8, 2004 p713

    [24]

    Watson G A 2007 J. Comput. Appl. Math. 208 331

    [25]

    Fan J Y, Pan J Y 2009 Appl. Math. Comput. 207 351

  • [1] 李宁, 翁春生. 基于多波长激光吸收光谱技术的气体浓度与温度二维分布遗传模拟退火重建研究. 物理学报, 2010, 59(10): 6914-6920. doi: 10.7498/aps.59.6914
    [2] 王传位, 李宁, 黄孝龙, 翁春生. 基于多角度投影激光吸收光谱技术的两段式速度分布流场测试方法. 物理学报, 2019, 68(24): 247801. doi: 10.7498/aps.68.20191223
    [3] 李梦琪, 张玉钧, 何莹, 尤坤, 范博强, 余冬琪, 谢皓, 雷博恩, 李潇毅, 刘建国, 刘文清. 基于连续量子级联激光器的1103.4 cm–1处NH3混叠吸收光谱特性研究. 物理学报, 2020, 69(7): 074201. doi: 10.7498/aps.69.20191832
    [4] 刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才. 减反膜外腔半导体激光器特性的研究. 物理学报, 2009, 58(1): 285-289. doi: 10.7498/aps.58.285.1
    [5] 牛生晓, 王云才, 贺虎成, 张明江. 光注入半导体激光器产生可调谐高频微波. 物理学报, 2009, 58(10): 7241-7245. doi: 10.7498/aps.58.7241
    [6] 赵严峰. 双反馈半导体激光器的混沌特性研究. 物理学报, 2009, 58(9): 6058-6062. doi: 10.7498/aps.58.6058
    [7] 张继兵, 张建忠, 杨毅彪, 梁君生, 王云才. 外腔半导体激光器随机数熵源的腔长分析. 物理学报, 2010, 59(11): 7679-7685. doi: 10.7498/aps.59.7679
    [8] 夏光琼, 邓涛, 林晓东, 吴正茂, 操良平. 基于非相干光反馈半导体激光器的双向混沌通信研究. 物理学报, 2010, 59(8): 5541-5546. doi: 10.7498/aps.59.5541
    [9] 张建忠, 王安帮, 张明江, 李晓春, 王云才. 反馈相位随机调制消除混沌半导体激光器的外腔长信息. 物理学报, 2011, 60(9): 094207. doi: 10.7498/aps.60.094207
    [10] 张依宁, 冯玉玲, 王晓茜, 赵振明, 高超, 姚治海. 半导体激光器混沌输出的延时特征和带宽. 物理学报, 2020, 69(9): 090501. doi: 10.7498/aps.69.20191881
    [11] 黄毅泽, 李毅, 王海方, 俞晓静, 张虎, 张伟, 朱慧群, 孙若曦, 周晟, 张宇明. 双光纤光栅外腔半导体激光器相干失效研究. 物理学报, 2012, 61(1): 014201. doi: 10.7498/aps.61.014201
    [12] 刘莹莹, 潘炜, 江宁, 项水英, 林煜东. 链式互耦合半导体激光器的实时混沌同步. 物理学报, 2013, 62(2): 024208. doi: 10.7498/aps.62.024208
    [13] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
    [14] 王云才, 李艳丽, 王安帮, 王冰洁, 张耕玮, 郭 萍. 激光混沌通信中半导体激光器接收机对高频信号的滤波特性. 物理学报, 2007, 56(8): 4686-4693. doi: 10.7498/aps.56.4686
    [15] 崔碧峰, 陈依新, 邹德恕, 刘 莹, 沈光地, 于海鹰. 一种与光纤高效耦合的新型大光腔大功率半导体激光器. 物理学报, 2007, 56(7): 3945-3949. doi: 10.7498/aps.56.3945
    [16] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [17] 孔令琴, 王安帮, 王海红, 王云才. 光反馈半导体激光器产生低频起伏与高维混沌信号及其演化过程. 物理学报, 2008, 57(4): 2266-2272. doi: 10.7498/aps.57.2266
    [18] 张振国, 郜峰利, 郭树旭, 李雪妍, 于思瑶. 一种估计半导体激光器1/f噪声参数的新方法. 物理学报, 2009, 58(4): 2772-2775. doi: 10.7498/aps.58.2772
    [19] 颜森林. 交叉相位调制提高半导体激光器混沌载波发射机带宽方法. 物理学报, 2010, 59(6): 3810-3816. doi: 10.7498/aps.59.3810
    [20] 何元, 邓涛, 吴正茂, 刘元元, 夏光琼. 非对称电流偏置下互耦半导体激光器的混沌同步特性研究. 物理学报, 2011, 60(4): 044204. doi: 10.7498/aps.60.044204
  • 引用本文:
    Citation:
计量
  • 文章访问数:  594
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-26
  • 修回日期:  2017-12-12
  • 刊出日期:  2018-03-05

基于光强与吸收率非线性同步拟合的吸收光谱测量方法

  • 1. 南京理工大学, 瞬态物理国家重点实验室, 南京 210094
  • 通信作者: 李宁, phoenixkyo@163.com
    基金项目: 

    国家自然科学基金(批准号:11372141,11472138)资助的课题.

摘要: 针对高压环境吸收谱线加宽以及波分复用技术合波透射信号分析测试难题,提出利用非线性拟合方法对激光吸收光谱测量中激光强度与吸收光谱进行耦合求解.建立激光强度非线性变化与多谱线吸收拟合函数关系,解决了特殊环境下无法获取光谱基线的难题,实现了波分复用过程合波后光谱信号的分离与诊断.通过仿真验证该方法的可行性,分析计算了激光器特性和特征谱线位置等因素对拟合结果的影响.搭建实验台实现了1–10 atm变压力环境下6330–6337 cm-1波段CO2吸收光谱叠加信号的诊断分析.对气液两相脉冲爆轰过程中7185.6 cm-1与7444.35 cm-1波段波分复用光谱信号进行测试与拟合,无需分光设备实现了耦合光路分离和温度计算.研究结果对激光吸收光谱技术在高压环境以及燃烧环境下波分复用技术的发展具有重要意义.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回