搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光梳主动滤波放大实现锶原子光钟二级冷却光源

徐琴芳 尹默娟 孔德欢 王叶兵 卢本全 郭阳 常宏

光梳主动滤波放大实现锶原子光钟二级冷却光源

徐琴芳, 尹默娟, 孔德欢, 王叶兵, 卢本全, 郭阳, 常宏
PDF
导出引用
导出核心图
  • 提出一种结合注入锁定技术的主动滤波放大方法,将光梳直接注入锁定至光栅外腔半导体激光器,产生窄线宽激光光源,该光源可以用于锶原子光钟二级冷却.实验中,将中心波长为689 nm,带宽为10 nm的光梳种子光源注入689 nm光栅式外腔半导体激光器,通过半导体增益光谱与半导体光栅外腔,从飞秒光梳的多个纵模梳齿中挑选出一个纵模模式来进行增益放大,再通过模式竞争,实现单纵模连续光输出;同时,光梳的重复频率锁定在线宽为赫兹量级的698 nm超稳激光光源上,因此,注入锁定后输出的窄线宽激光也继承了超稳激光光源的光谱特性.利用得到的输出功率为12 mW的689 nm窄线宽激光光源实现了88Sr原子光钟的二级冷却过程,最终获得温度为3 K,原子数约为5106的冷原子团.该方法可拓展至原子光钟其他光源的获得,从而实现原子光钟的集成化和小型化.
      通信作者: 常宏, changhong@ntsc.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11474282,61775220)、中国科学院战略性先导科技专项(B类)(批准号:XDB21030700)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC004)资助的课题.
    [1]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [2]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [3]

    Huntemann N, Sanner C, Lipphardt B, Tamm Chr, Peik E 2016 Phys. Rev. Lett. 116 063001

    [4]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [5]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [6]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagrny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 405

    [7]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [9]

    Xu Y L, Xu X Y 2016 Chin. Phys. B 25 103202

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lyu B L 2017 Chin. Phys. Lett. 34 020601

    [11]

    Liu K K, Zhao R C, Gou W, Fu X H, Liu H L, Yin S Q, Sun J F, Xu Z, Wang Y Z 2016 Chin. Phys. Lett. 33 070602

    [12]

    Liu H L, Yin S Q, Liu K K, Qian J, Xu Z, Hong T, Wang Y Z 2013 Chin. Phys. B 22 043701

    [13]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [14]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J 2008 Phys. Rev. Lett. 100 140801

    [15]

    Gurov M, Mcferran J J, Nagrny B, Tyumenev R, Xu Z, Le C Y, Le T R, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [16]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Hfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [17]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [18]

    Gao F, Liu H, Xu P, Wang Y B, Tian X, Chang H 2014 Acta Phys. Sin. 63 140704 (in Chinese)[高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏 2014 物理学报 63 140704]

    [19]

    Zhang S N, Zhang X G, Cui J Z, Jiang Z J, Shang H S, Zhu C W, Chang P C, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106

    [20]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459

    [21]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [22]

    Moon H S, Kim E B, Park S E, Park C Y 2006 Appl. Phys. Lett. 89 181110

    [23]

    Wu D S, Slavk R, Marra G, Richardson D J 2013 J. Lightwave Technol. 31 2287

    [24]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Rep. 416 1

    [25]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese)[阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [26]

    Liu H, Yin M J, Kong D H, Xu Q F, Zhang S G, Chang H 2015 Appl. Phys. Lett. 107 151104

    [27]

    Lawrence J S, Kane D M 1999 Opt. Commun. 167 273

    [28]

    Gao F, Liu H, Xu P, Tian X, Wang Y B, Ren J, Wu H B, Chang H 2014 AIP Adv. 4 027118

    [29]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

  • [1]

    Ushijima I, Takamoto M, Das M, Ohkubo T, Katori H 2015 Nat. Photon. 9 185

    [2]

    Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W, Ludlow A D 2013 Science 341 1215

    [3]

    Huntemann N, Sanner C, Lipphardt B, Tamm Chr, Peik E 2016 Phys. Rev. Lett. 116 063001

    [4]

    Matsubara K, Hachisu H, Li Y, Nagano S, Locke C, Nogami A, Kajita M, Hayasaka K, Ido T, Hosokawa M 2012 Opt. Express 20 22034

    [5]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nature 506 71

    [6]

    Le Targat R, Lorini L, Le Coq Y, Zawada M, Guna J, Abgrall M, Gurov M, Rosenbusch P, Rovera D G, Nagrny B, Gartman R, Westergaard P G, Tobar M E, Lours M, Santarelli G, Clairon A, Bize S, Laurent P, Lemonde P, Lodewyck J 2013 Nat. Commun. 4 405

    [7]

    Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637

    [8]

    Lin Y G, Wang Q, Li Y, Meng F, Lin B K, Zang E J, Sun Z, Fang F, Li T C, Fang Z J 2015 Chin. Phys. Lett. 32 090601

    [9]

    Xu Y L, Xu X Y 2016 Chin. Phys. B 25 103202

    [10]

    Liu H, Zhang X, Jiang K L, Wang J Q, Zhu Q, Xiong Z X, He L X, Lyu B L 2017 Chin. Phys. Lett. 34 020601

    [11]

    Liu K K, Zhao R C, Gou W, Fu X H, Liu H L, Yin S Q, Sun J F, Xu Z, Wang Y Z 2016 Chin. Phys. Lett. 33 070602

    [12]

    Liu H L, Yin S Q, Liu K K, Qian J, Xu Z, Hong T, Wang Y Z 2013 Chin. Phys. B 22 043701

    [13]

    Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah O N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J, Ye J 2017 Science 358 90

    [14]

    Blatt S, Ludlow A D, Campbell G K, Thomsen J W, Zelevinsky T, Boyd M M, Ye J 2008 Phys. Rev. Lett. 100 140801

    [15]

    Gurov M, Mcferran J J, Nagrny B, Tyumenev R, Xu Z, Le C Y, Le T R, Lemonde P, Lodewyck J, Bize S 2013 IEEE Trans. Instrum. Meas. 62 1568

    [16]

    Falke S, Lemke N, Grebing C, Lipphardt B, Weyers S, Gerginov V, Huntemann N, Hagemann C, Al-Masoudi A, Hfner S, Vogt S, Sterr U, Lisdat C 2014 New J. Phys. 16 073023

    [17]

    Chou C W, Hume D B, Rosenband T, Wineland D J 2010 Science 329 1630

    [18]

    Gao F, Liu H, Xu P, Wang Y B, Tian X, Chang H 2014 Acta Phys. Sin. 63 140704 (in Chinese)[高峰, 刘辉, 许朋, 王叶兵, 田晓, 常宏 2014 物理学报 63 140704]

    [19]

    Zhang S N, Zhang X G, Cui J Z, Jiang Z J, Shang H S, Zhu C W, Chang P C, Zhang L, Tu J H, Chen J B 2017 Rev. Sci. Instrum. 88 103106

    [20]

    Shang H S, Zhang X G, Zhang S N, Pan D, Chen H J, Chen J B 2017 Opt. Express 25 30459

    [21]

    Cundiff S T, Ye J 2003 Rev. Mod. Phys. 75 325

    [22]

    Moon H S, Kim E B, Park S E, Park C Y 2006 Appl. Phys. Lett. 89 181110

    [23]

    Wu D S, Slavk R, Marra G, Richardson D J 2013 J. Lightwave Technol. 31 2287

    [24]

    Wieczorek S, Krauskopf B, Simpson T B, Lenstra D 2005 Phys. Rep. 416 1

    [25]

    Yan J, Pan W, Li N Q, Zhang L Y, Liu Q X 2016 Acta Phys. Sin. 65 204203 (in Chinese)[阎娟, 潘炜, 李念强, 张力月, 刘庆喜 2016 物理学报 65 204203]

    [26]

    Liu H, Yin M J, Kong D H, Xu Q F, Zhang S G, Chang H 2015 Appl. Phys. Lett. 107 151104

    [27]

    Lawrence J S, Kane D M 1999 Opt. Commun. 167 273

    [28]

    Gao F, Liu H, Xu P, Tian X, Wang Y B, Ren J, Wu H B, Chang H 2014 AIP Adv. 4 027118

    [29]

    Xu Q F, Liu H, Lu B Q, Wang Y B, Yin M J, Kong D H, Ren J, Tian X, Chang H 2015 Chin. Opt. Lett. 13 100201

  • [1] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191908
    [2] 周峰, 蔡宇, 邹德峰, 胡丁桐, 张亚静, 宋有建, 胡明列. 钛宝石飞秒激光器中孤子分子的内部动态探测. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191989
    [3] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [4] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [5] 李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才. 蓝移阱中单个铯原子基态磁不敏感态的相干操控. 物理学报, 2020, (): . doi: 10.7498/aps.69.20192001
    [6] 王瑜浩, 武保剑, 郭飚, 文峰, 邱昆. 基于非线性光纤环形镜的少模脉冲幅度调制再生器研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191858
    [7] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [8] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [9] 刘家合, 鲁佳哲, 雷俊杰, 高勋, 林景全. 气体压强对纳秒激光诱导空气等离子体特性的影响. 物理学报, 2020, 69(5): 057401. doi: 10.7498/aps.69.20191540
    [10] 刘厚通, 毛敏娟. 一种无需定标的地基激光雷达气溶胶消光系数精确反演方法. 物理学报, 2019, 68(7): 074205. doi: 10.7498/aps.68.20181825
    [11] 周旭聪, 石尚, 李飞, 孟庆田, 王兵兵. 利用双色激光场下域上电离谱鉴别H32+ 两种不同分子构型. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200013
    [12] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
  • 引用本文:
    Citation:
计量
  • 文章访问数:  316
  • PDF下载量:  108
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-25
  • 修回日期:  2018-02-02
  • 刊出日期:  2018-04-20

光梳主动滤波放大实现锶原子光钟二级冷却光源

  • 1. 中国科学院国家授时中心, 时间频率基准重点实验室, 西安 710600;
  • 2. 中国科学院大学, 北京 100049
  • 通信作者: 常宏, changhong@ntsc.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11474282,61775220)、中国科学院战略性先导科技专项(B类)(批准号:XDB21030700)和中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-JSC004)资助的课题.

摘要: 提出一种结合注入锁定技术的主动滤波放大方法,将光梳直接注入锁定至光栅外腔半导体激光器,产生窄线宽激光光源,该光源可以用于锶原子光钟二级冷却.实验中,将中心波长为689 nm,带宽为10 nm的光梳种子光源注入689 nm光栅式外腔半导体激光器,通过半导体增益光谱与半导体光栅外腔,从飞秒光梳的多个纵模梳齿中挑选出一个纵模模式来进行增益放大,再通过模式竞争,实现单纵模连续光输出;同时,光梳的重复频率锁定在线宽为赫兹量级的698 nm超稳激光光源上,因此,注入锁定后输出的窄线宽激光也继承了超稳激光光源的光谱特性.利用得到的输出功率为12 mW的689 nm窄线宽激光光源实现了88Sr原子光钟的二级冷却过程,最终获得温度为3 K,原子数约为5106的冷原子团.该方法可拓展至原子光钟其他光源的获得,从而实现原子光钟的集成化和小型化.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回