搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复杂网络动力学模型的无向加权网络节点重要性评估

孔江涛 黄健 龚建兴 李尔玉

基于复杂网络动力学模型的无向加权网络节点重要性评估

孔江涛, 黄健, 龚建兴, 李尔玉
PDF
导出引用
导出核心图
  • 定量分析识别复杂网络中的重要节点对于研究复杂网络鲁棒性和脆弱性意义重大,当前基于网络结构的节点重要性评估方法成果丰富,而基于复杂网络动力学模型的节点重要性评估方法较少.针对无向加权网络,本文首先提出了构建其对应的复杂网络动力学模型的方法,并证明了该类复杂网络动力学模型是大范围内一致渐近稳定的;然后建立了复杂网络动力学模型的偏离均值和基于偏离均值的方差两级节点重要性评估标准;最后给出了扰动测试和破坏测试两种基于复杂网络动力学模型的节点重要性评估方法.基于复杂网络动力学模型的节点重要性评估方法不仅结合了网络拓扑结构信息,同时又结合了节点自身的特性,所以评价结果更为全面.将这两种方法用于ARPA (advanced research project agency)网络、对称无向加权网络、社交网络、Dobbs-Watts-Sabel网络和Barrat-Barthelemy-Vespignani网络的重要节点评估,并与已有的复杂网络节点重要性分析方法进行比较,证明了所提出方法的有效性.
      通信作者: 黄健, nudtjHuang@hotmail.com
    [1]

    Zhao M, Zhou T, Wang B H, Wang W X 2005 Phys. Rev. E 72 057102

    [2]

    Zemanov L, Zhou C, Kurths J 2006 Physica D 224 202

    [3]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [4]

    Bonacich P 1972 J. Math. Sociol. 2 113

    [5]

    Estrada E, Rodrguez-Velzquez J A 2005 Phys. Rev. E 71 056103

    [6]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [7]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [8]

    Chen D B, L L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [9]

    Ruan Y R, Lao S Y, Wang J D, Bai L, Chen L D 2017 Acta Phys. Sin. 66 038902 (in Chinese) [阮逸润, 老松杨, 王竣德, 白亮, 陈立栋 2017 物理学报 66 038902]

    [10]

    Freeman L C, Borgatti S P, White D R 1991 Soc. Networks 13 141

    [11]

    Estrada E, Higham D J, Hatano N 2009 Physica A 388 764

    [12]

    Li Q, Zhou T, L L Y, Chen D B 2014 Physica A 404 47

    [13]

    Zhou Y B, Lei T, Zhou T 2011 Europhys. Lett. 94 48002

    [14]

    Li P X, Ren Y Q, Xi Y M 2004 Systems Eng. 22 13 (in Chinese) [李鹏翔, 任玉晴, 席酉民 2004 系统工程 22 13]

    [15]

    Gao C, Wei D J, Hu Y, Mahadevan S, Deng Y 2013 Physica A 392 5490

    [16]

    Wang Y, Guo J L 2017 Acta Phys. Sin. 66 050201 (in Chinese) [王雨, 郭进利 2017 物理学报 66 050201]

    [17]

    L L, Zhang Y C, Chi H Y, Zhou T 2011 Plos One 6 e21202

    [18]

    Yan G, Zhou T, Wang J, Fu Z Q, Wang B 2005 Chin. Phys. Lett. 22 510

    [19]

    Brummitt C D, DSouza R M, Leicht E A 2012 Proceedings of the National Academy of Sciences of the United States of America 109 E680

    [20]

    Du W J, Yu J L, An X L, Ma C X 2015 Transport Research 1 14 (in Chinese) [杜文举, 俞建宁, 安新磊, 马昌喜 2015 交通运输研究 1 14]

    [21]

    Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167

    [22]

    Jia T, Barabsi A L 2013 Sci. Rep. 3 2354

    [23]

    Chen T P, Lu W L 2013 Theory of Coordination in Complex Networks (Beijing: Higher Education Press) p14 (in Chinese) [陈天平, 卢文联 2013 复杂网络协调性理论 (北京: 高等教育出版社) 第14 页]

    [24]

    Wang E F, Shi S M 2005 Advanced Algebra (3rd Ed.) (Beijing: Higher Education Press) p160 (in Chinese) [王萼芳, 石生明 2005 高等代数 第三版 (北京: 高等教育出版社) 第160页]

    [25]

    Zhong Q H 2004 Modern Control Theory 2004 (Beijing: Higher Education Press) p142 (in Chinese) [钟秋海 2004 现代控制理论 (北京: 高等教育出版社) 第142页]

    [26]

    Liang H L 2015 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [梁海丽 2015 博士学位论文 (上海: 上海交通大学)]

    [27]

    Wang B, Ma R N, Wang G, Chen B 2015 J. Comput. Appl. 35 1820 (in Chinese) [王班, 马润年, 王刚, 陈波 2015 计算机应用 35 1820]

    [28]

    Brin S, Page L 1998 Computer Networks and ISDN Systems 30 107

    [29]

    Yao Z Q, Shang K K, Xu X K 2012 J. Univ. Shanghai Sci. Technol. 34 18 (in Chinese) [姚尊强, 尚可可, 许小可 2012 上海理工大学学报 34 18]

    [30]

    Dodds P S, Watts D J, Sabel C F 2003 PNAS 100 12516

    [31]

    Yuan M 2014 Acta Phys. Sin. 63 220501 (in Chinese) [袁铭 2014 物理学报 63 220501]

    [32]

    Zachary W W 1977 J. Anthropol. Res. 33 452

    [33]

    Pan Z F, Wang X F 2006 Acta Phys. Sin. 55 4058 (in Chinese) [潘灶烽, 汪小帆 2006 物理学报 55 4058]

    [34]

    Latora V, Marchiori M 2007 New J. Phys. 9 188

  • [1]

    Zhao M, Zhou T, Wang B H, Wang W X 2005 Phys. Rev. E 72 057102

    [2]

    Zemanov L, Zhou C, Kurths J 2006 Physica D 224 202

    [3]

    L L Y, Chen D B, Ren X L, Zhang Q M, Zhang Y C, Zhou T 2016 Phys. Rep. 650 1

    [4]

    Bonacich P 1972 J. Math. Sociol. 2 113

    [5]

    Estrada E, Rodrguez-Velzquez J A 2005 Phys. Rev. E 71 056103

    [6]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888

    [7]

    L L Y, Zhou T, Zhang Q M, Stanley H E 2016 Nat. Commun. 7 10168

    [8]

    Chen D B, L L Y, Shang M S, Zhang Y C, Zhou T 2012 Physica A 391 1777

    [9]

    Ruan Y R, Lao S Y, Wang J D, Bai L, Chen L D 2017 Acta Phys. Sin. 66 038902 (in Chinese) [阮逸润, 老松杨, 王竣德, 白亮, 陈立栋 2017 物理学报 66 038902]

    [10]

    Freeman L C, Borgatti S P, White D R 1991 Soc. Networks 13 141

    [11]

    Estrada E, Higham D J, Hatano N 2009 Physica A 388 764

    [12]

    Li Q, Zhou T, L L Y, Chen D B 2014 Physica A 404 47

    [13]

    Zhou Y B, Lei T, Zhou T 2011 Europhys. Lett. 94 48002

    [14]

    Li P X, Ren Y Q, Xi Y M 2004 Systems Eng. 22 13 (in Chinese) [李鹏翔, 任玉晴, 席酉民 2004 系统工程 22 13]

    [15]

    Gao C, Wei D J, Hu Y, Mahadevan S, Deng Y 2013 Physica A 392 5490

    [16]

    Wang Y, Guo J L 2017 Acta Phys. Sin. 66 050201 (in Chinese) [王雨, 郭进利 2017 物理学报 66 050201]

    [17]

    L L, Zhang Y C, Chi H Y, Zhou T 2011 Plos One 6 e21202

    [18]

    Yan G, Zhou T, Wang J, Fu Z Q, Wang B 2005 Chin. Phys. Lett. 22 510

    [19]

    Brummitt C D, DSouza R M, Leicht E A 2012 Proceedings of the National Academy of Sciences of the United States of America 109 E680

    [20]

    Du W J, Yu J L, An X L, Ma C X 2015 Transport Research 1 14 (in Chinese) [杜文举, 俞建宁, 安新磊, 马昌喜 2015 交通运输研究 1 14]

    [21]

    Liu Y Y, Slotine J J, Barabasi A L 2011 Nature 473 167

    [22]

    Jia T, Barabsi A L 2013 Sci. Rep. 3 2354

    [23]

    Chen T P, Lu W L 2013 Theory of Coordination in Complex Networks (Beijing: Higher Education Press) p14 (in Chinese) [陈天平, 卢文联 2013 复杂网络协调性理论 (北京: 高等教育出版社) 第14 页]

    [24]

    Wang E F, Shi S M 2005 Advanced Algebra (3rd Ed.) (Beijing: Higher Education Press) p160 (in Chinese) [王萼芳, 石生明 2005 高等代数 第三版 (北京: 高等教育出版社) 第160页]

    [25]

    Zhong Q H 2004 Modern Control Theory 2004 (Beijing: Higher Education Press) p142 (in Chinese) [钟秋海 2004 现代控制理论 (北京: 高等教育出版社) 第142页]

    [26]

    Liang H L 2015 Ph. D. Dissertation (Shanghai: Shanghai Jiao Tong University) (in Chinese) [梁海丽 2015 博士学位论文 (上海: 上海交通大学)]

    [27]

    Wang B, Ma R N, Wang G, Chen B 2015 J. Comput. Appl. 35 1820 (in Chinese) [王班, 马润年, 王刚, 陈波 2015 计算机应用 35 1820]

    [28]

    Brin S, Page L 1998 Computer Networks and ISDN Systems 30 107

    [29]

    Yao Z Q, Shang K K, Xu X K 2012 J. Univ. Shanghai Sci. Technol. 34 18 (in Chinese) [姚尊强, 尚可可, 许小可 2012 上海理工大学学报 34 18]

    [30]

    Dodds P S, Watts D J, Sabel C F 2003 PNAS 100 12516

    [31]

    Yuan M 2014 Acta Phys. Sin. 63 220501 (in Chinese) [袁铭 2014 物理学报 63 220501]

    [32]

    Zachary W W 1977 J. Anthropol. Res. 33 452

    [33]

    Pan Z F, Wang X F 2006 Acta Phys. Sin. 55 4058 (in Chinese) [潘灶烽, 汪小帆 2006 物理学报 55 4058]

    [34]

    Latora V, Marchiori M 2007 New J. Phys. 9 188

  • [1] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [2] 王艳, 徐进良, 李文, 刘欢. 超临界Lennard-Jones流体结构特性分子动力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191591
    [3] 周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜. 脉冲射频容性耦合氩等离子体的发射探针诊断. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191864
    [4] 黄永峰, 曹怀信, 王文华. 共轭线性对称性及其对\begin{document}$ {\mathcal{P}}{\mathcal{T}} $\end{document}-对称量子理论的应用. 物理学报, 2020, 69(3): 030301. doi: 10.7498/aps.69.20191173
    [5] 钟哲强, 张彬, 母杰, 王逍. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200034
    [6] 董正琼, 赵杭, 朱金龙, 石雅婷. 入射光照对典型光刻胶纳米结构的光学散射测量影响分析. 物理学报, 2020, 69(3): 030601. doi: 10.7498/aps.69.20191525
    [7] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [8] 罗菊, 韩敬华. 激光等离子体去除微纳颗粒的热力学研究. 物理学报, 2020, (): . doi: 10.7498/aps.69.20191933
    [9] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [10] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
  • 引用本文:
    Citation:
计量
  • 文章访问数:  543
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-24
  • 修回日期:  2018-02-12
  • 刊出日期:  2018-05-05

基于复杂网络动力学模型的无向加权网络节点重要性评估

  • 1. 国防科技大学机电工程与自动化学院, 长沙 410073
  • 通信作者: 黄健, nudtjHuang@hotmail.com

摘要: 定量分析识别复杂网络中的重要节点对于研究复杂网络鲁棒性和脆弱性意义重大,当前基于网络结构的节点重要性评估方法成果丰富,而基于复杂网络动力学模型的节点重要性评估方法较少.针对无向加权网络,本文首先提出了构建其对应的复杂网络动力学模型的方法,并证明了该类复杂网络动力学模型是大范围内一致渐近稳定的;然后建立了复杂网络动力学模型的偏离均值和基于偏离均值的方差两级节点重要性评估标准;最后给出了扰动测试和破坏测试两种基于复杂网络动力学模型的节点重要性评估方法.基于复杂网络动力学模型的节点重要性评估方法不仅结合了网络拓扑结构信息,同时又结合了节点自身的特性,所以评价结果更为全面.将这两种方法用于ARPA (advanced research project agency)网络、对称无向加权网络、社交网络、Dobbs-Watts-Sabel网络和Barrat-Barthelemy-Vespignani网络的重要节点评估,并与已有的复杂网络节点重要性分析方法进行比较,证明了所提出方法的有效性.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回