搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纠缠微波信号的特性及表示方法

李响 吴德伟 苗强 朱浩男 魏天丽

纠缠微波信号的特性及表示方法

李响, 吴德伟, 苗强, 朱浩男, 魏天丽
PDF
导出引用
导出核心图
  • 纠缠微波信号是电磁场微波频段量子特性的体现.在总结了现有纠缠微波信号产生及验证实验的基础上,针对目前没有统一的表达式来描述纠缠微波信号格式的问题,通过深入分析纠缠微波信号的特性,提出了两种纠缠微波信号的表示方法.一种是在量子框架下,利用双模压缩真空态表示,并分别在光子数表象下和Wigner分布下分析了其信号特征,刻画了正交分量之间的正反关联特性;另一种是在经典框架下,利用关联随机信号表示,刻画了测量后纠缠微波信号场幅度正交分量随时间变化的波形图.两种表示恰当合理地反映了纠缠微波信号连续变量纠缠的特性.
    • 基金项目: 国家自然科学基金(批准号:61603413,61573372)资助的课题.
    [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [3]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys. 77 513

    [4]

    Gisin N, Thew R T 2010 Electron. Lett. 46 965

    [5]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (New York: Cambridge University Press)

    [6]

    Benjamin H 2016 C. R. Phys. 17 679

    [7]

    Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y, Tsai J S 2008 Appl. Phys. Lett. 93 042510

    [8]

    Zhong L, Menzel E P, Candia R D, Eder P, Ihmig M, Baust A, Haeberlein M, Hoffmann E, Inomata K, Yamamoto T, Nakamura Y, Solano E, Deppe F, Marx A, Gross R 2013 New J. Phys. 15 125013

    [9]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [10]

    Menzel E P, Candia R D, Deppe F, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [11]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [12]

    Dambach S, Kubala B, Ankerhold J 2017 New J. Phys. 19 023027

    [13]

    Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Knill E, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2011 Phys. Rev. Lett. 106 220502

    [14]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64

    [15]

    Abdo B, Kamal A, Devoret M H 2013 Phys. Rev. B 87 014508

    [16]

    Zhou X, Schmitt V, Bertet P, Vion D, Wustmann W, Shumeiko V, Esteve D 2014 Phys. Rev. B 89 214517

    [17]

    Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N, Martinis John M 2014 Appl. Phys. Lett. 104 263513

    [18]

    Pillet J D, Flurin E, Mallet F, Huard B 2015 Appl. Phys. Lett. 106 083509

    [19]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503

    [20]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [21]

    Khrennikov A, Ohya M, Watanab N 2010 J. Russ. Laser Res. 31 462

    [22]

    Bharath H M, Ravishankar V 2014 Phys. Rev. A 89 062110

  • [1]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [2]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [3]

    Braunstein S L, Loock P 2005 Rev. Mod. Phys. 77 513

    [4]

    Gisin N, Thew R T 2010 Electron. Lett. 46 965

    [5]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (New York: Cambridge University Press)

    [6]

    Benjamin H 2016 C. R. Phys. 17 679

    [7]

    Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y, Tsai J S 2008 Appl. Phys. Lett. 93 042510

    [8]

    Zhong L, Menzel E P, Candia R D, Eder P, Ihmig M, Baust A, Haeberlein M, Hoffmann E, Inomata K, Yamamoto T, Nakamura Y, Solano E, Deppe F, Marx A, Gross R 2013 New J. Phys. 15 125013

    [9]

    Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink J M, Filipp S, Wallraff A 2011 Phys. Rev. Lett. 107 113601

    [10]

    Menzel E P, Candia R D, Deppe F, Zhong L, Ihmig M, Haeberlein M, Baust A, Hoffmann E, Ballester D, Inomata K, Yamamoto T, Nakamura Y, Solano E, Marx A, Gross R 2012 Phys. Rev. Lett. 109 250502

    [11]

    Flurin E, Roch N, Mallet F, Devoret M H, Huard B 2012 Phys. Rev. Lett. 109 183901

    [12]

    Dambach S, Kubala B, Ankerhold J 2017 New J. Phys. 19 023027

    [13]

    Mallet F, Castellanos-Beltran M A, Ku H S, Glancy S, Knill E, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2011 Phys. Rev. Lett. 106 220502

    [14]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64

    [15]

    Abdo B, Kamal A, Devoret M H 2013 Phys. Rev. B 87 014508

    [16]

    Zhou X, Schmitt V, Bertet P, Vion D, Wustmann W, Shumeiko V, Esteve D 2014 Phys. Rev. B 89 214517

    [17]

    Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N, Martinis John M 2014 Appl. Phys. Lett. 104 263513

    [18]

    Pillet J D, Flurin E, Mallet F, Huard B 2015 Appl. Phys. Lett. 106 083509

    [19]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503

    [20]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [21]

    Khrennikov A, Ohya M, Watanab N 2010 J. Russ. Laser Res. 31 462

    [22]

    Bharath H M, Ravishankar V 2014 Phys. Rev. A 89 062110

  • [1] 翁明, 谢少毅, 殷明, 曹猛. 介质材料二次电子发射特性对微波击穿的影响. 物理学报, 2020, (): . doi: 10.7498/aps.69.20200026
    [2] 张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞. 14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比. 物理学报, 2020, 69(5): 056101. doi: 10.7498/aps.69.20191209
    [3] 胡耀华, 刘艳, 穆鸽, 秦齐, 谭中伟, 王目光, 延凤平. 基于多模光纤散斑的压缩感知在光学图像加密中的应用. 物理学报, 2020, 69(3): 034203. doi: 10.7498/aps.69.20191143
    [4] 李翔艳, 王志辉, 李少康, 田亚莉, 李刚, 张鹏飞, 张天才. 蓝移阱中单个铯原子基态磁不敏感态的相干操控. 物理学报, 2020, (): . doi: 10.7498/aps.69.20192001
  • 引用本文:
    Citation:
计量
  • 文章访问数:  87
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-26
  • 修回日期:  2018-10-11

纠缠微波信号的特性及表示方法

  • 空军工程大学信息与导航学院, 西安 710077
    基金项目: 

    国家自然科学基金(批准号:61603413,61573372)资助的课题.

摘要: 纠缠微波信号是电磁场微波频段量子特性的体现.在总结了现有纠缠微波信号产生及验证实验的基础上,针对目前没有统一的表达式来描述纠缠微波信号格式的问题,通过深入分析纠缠微波信号的特性,提出了两种纠缠微波信号的表示方法.一种是在量子框架下,利用双模压缩真空态表示,并分别在光子数表象下和Wigner分布下分析了其信号特征,刻画了正交分量之间的正反关联特性;另一种是在经典框架下,利用关联随机信号表示,刻画了测量后纠缠微波信号场幅度正交分量随时间变化的波形图.两种表示恰当合理地反映了纠缠微波信号连续变量纠缠的特性.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回