搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HD+分子的强场光解离动力学及其量子调控的理论研究

姚洪斌 蒋相站 曹长虹 李文亮

引用本文:
Citation:

HD+分子的强场光解离动力学及其量子调控的理论研究

姚洪斌, 蒋相站, 曹长虹, 李文亮

Theoretical study of dissociation dynamics of HD+ and its quantum control with an intense laser field

Yao Hong-Bin, Jiang Xiang-Zhan, Cao Chang-Hong, Li Wen-Liang
PDF
HTML
导出引用
  • 利用精确求解原子核与电子耦合运动的三维含时量子波包法, 理论研究了HD+分子在强激光场中的光解离动力学, 并给出了量子调控HD+分子光解离通道的理论方案. 通过分析HD+分子在不同的初始振动态和激光场强度下的光解离动力学过程及其解离核动能谱, 得出了HD+分子的光解离机理及其随激光场强度的变化规律. 研究结果表明, 利用激光场的强度可以实现HD+分子光解离通道的量子调控. 当激光场强度I1 = 4.0 × 1013 W/cm2时, HD+分子的光解离主要是通过净单光子吸收解离和净双光子吸收解离; 当激光场强度增大到I2 = 2.0 × 1014 W/cm2时, 直接双光子吸收解离取代了净单光子吸收解离, 净双光子吸收解离的比重也下降了.
    The dissociation dynamics of HD+ molecule in an intense field is investigated by using an accurate three-dimensional time-dependent wave packet approach. When the 790-nm laser pulse interacts with HD+ molecule, the lowest electronic 1sσ and 2pσ states are coupled. Due to the existence of the permanent electric dipole moment, the transitions in HD+ molecule involve the direct absorption of an odd and even number of photons, thereby opening different pathways for dissociation. The model of the photon-dressed states is presented to analyze the possible dissociation pathways of HD+ molecule. The laser-induced dissociation of HD+ molecule is mainly composed of the four pathways: the direct one-photon absorption, the net two-photon absorption, the direct two-photon absorption, and the direct two-photon absorption. To reveal the dissociation mechanism of HD+ molecule, the kinetic energy resolved spectra are calculated at the given laser intensities. It is found that the dissociation pathways are strongly dependent on laser intensity, especially for the net one-photon absorption dissociation and direct two-photon absorption dissociation. With further research, the dissociation pathways of HD+ are controlled by regulating the intensity of laser pulse. At a laser intensity of 4.0 × 1013 W/cm2, the kinetic energy resolved spectrum for the vibrational state ν = 3 includes the contributions from the net two-photon absorption dissociation and the direct two-photon absorption dissociation. For the vibrational state ν = 6, HD+ molecule is preferentially dissociated via the net one-photon absorption. However, the dissociation mechanism of HD+ molecule at the vibrational states ν = 3 and ν = 6 have significant changes as the laser intensity increases to 2.0 × 1014 W/cm2. For the vibrational state ν = 3, the branching ratio between the dissociation pathway of the net two-photon absorption and that of the direct two-photon absorption has a dramatic change with the increase of laser intensity. Compared with the kinetic energy resolved spectra at laser energy of 4.0 × 1013 W/cm2, the height of the dissociation peak from the net two-photon absorption decreases, and that of the direct two-photon absorption increases at laser intensity of 2.0 × 1014 W/cm2. For the vibrational state ν = 6, the dissociation process of the net one-photon absorption almost disappears at laser intensity of 2.0 × 1014 W/cm2, and it is replaced by the dissociation pathway of the direct two-photon absorption.
      通信作者: 李文亮, wenliangli@vip.126.com
    • 基金项目: 新疆维吾尔自治区高等学校科研计划项目(批准号: XJEDU2016I051, XJEDU2017M042, XJEDU2018I020)、国家自然科学基金(批准号: 11764041, 51462034)、新疆维吾尔自治区天山青年计划(批准号: 2017Q033, 2017Q034)和新疆维吾尔自治区自然科学基金(批准号: 2019D01A32)资助的课题.
      Corresponding author: Li Wen-Liang, wenliangli@vip.126.com
    • Funds: Project supported by the Scientific Research Program of the Higher Education Institution of Xinjiang, China (Grant Nos. XJEDU2016I051, XJEDU2017M042, XJEDU2018I020), the National Natural Science Foundation of China (Grant Nos. 11764041, 51462034), the Tianshan Youth Program of Xinjiang, China (Grant Nos. 2017Q033, 2017Q034), and the Natural Science Foundation of Xinjiang, China (Grant No. 2019D01A32).
    [1]

    秦朝朝, 黄燕, 彭玉峰 2017 物理学报 66 193301Google Scholar

    Qin C C, Huang Y, Peng Y F 2017 Acta Phys. Sin. 66 193301Google Scholar

    [2]

    Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246

    [3]

    Sun Z P, Yao H B, Wang C Y, Zhao, W K, Yang C L 2019 Laser Phys. Lett. 16 016001Google Scholar

    [4]

    Chang Z C, Li C M, Guo W, Yao H B 2018 Chin. Phys. B 27 053301Google Scholar

    [5]

    Yao H B, Guo W, Hoffmann M R, Han K L 2014 Phys. Rev. A 90 063418Google Scholar

    [6]

    刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新 2016 物理学报 65 223206Google Scholar

    Liu C D, Jia Z M, Zheng Y H, Ge X C, Zeng Z N, Li R X 2016 Acta Phys. Sin. 65 223206Google Scholar

    [7]

    姚洪斌, 李文亮, 张季, 彭敏 2014 物理学报 63 178201Google Scholar

    Yao H B, Li W L, Zhang J, Peng M 2014 Acta Phys. Sin. 63 178201Google Scholar

    [8]

    Yao H B, Zhen Y J 2011 Phys. Chem. Chem. Phys. 13 8900Google Scholar

    [9]

    Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883Google Scholar

    [10]

    Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar

    [11]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar

    [12]

    Frasinski L J, Plumridge J, Posthumus J H, Codling K, Taday P F, Divall E J, Langley A J 2001 Phys. Rev. Lett. 86 2541Google Scholar

    [13]

    Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar

    [14]

    Posthumus J H 2004 Rep. Prog. Phys. 67 623Google Scholar

    [15]

    Orr P A, Williams I D, Greenwood J B, Turcu I C E, Bryan W A, Pedregosa-Gutierrez J, Walter C W 2007 Phys. Rev. Lett. 98 163001Google Scholar

    [16]

    Kiess A, Pavičić D, Hänsch T W, Figger H 2008 Phys. Rev. A 77 053401Google Scholar

    [17]

    McKenna J, Sayler A M, Gaire B, Johnson N G, Zohrabi M, Carnes K D, Esry B D, Ben-Itzhak I 2009 J. Phys. B: At. Mol. Opt. Phys. 42 121003Google Scholar

    [18]

    McKenna J, Sayler A M, Gaire B, Johnson N G, Parke E, Carnes K D, Esry B D, Ben-Itzhak I 2009 Phys. Rev. A 80 023421Google Scholar

    [19]

    Liu Z T, Yuan K J, Shu C C, Hu W H, Cong S L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055601Google Scholar

    [20]

    He H X, Lu R F, Zhang P Y, Guo Y H, Han K L, He G Z 2011 Phys. Rev. A 84 033418Google Scholar

    [21]

    He H X, Lu R F, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 024311Google Scholar

    [22]

    Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar

    [23]

    Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001

    [24]

    Feuerstein B, Thumm U 2003 Phys. Rev. A 67 043405Google Scholar

    [25]

    姚洪斌, 张季, 彭敏, 李文亮 2014 物理学报 63 198202Google Scholar

    Yao H B, Zhang J, Peng M, Li W L 2014 Acta Phys. Sin. 63 198202Google Scholar

    [26]

    Yao H B, Zhao G J 2014 J. Phys. Chem. A 118 9173Google Scholar

    [27]

    McKenna J, Sayler A M, Anis F, Gaire B, Johnson N G, Parke E, Hua J J, Mashiko H, Nakamura C M, Moon E, Chang Z, Carnes K D, Esry B D, Ben-Itzhak I 2008 Phys. Rev. Lett. 100 133001Google Scholar

  • 图 1  HD+分子在1sσ和2pσ光子缀饰态势能曲线上的解离示意图[15,25]

    Fig. 1.  The schematic diagram for the dissociation of HD+ molecule at the dressed potentials of electronic 1sσ and 2pσ states.

    图 2  激光场强度I1 = 4.0 × 1013 W/cm2时, HD+分子在初始振动态ν = 3 (a)和ν = 6 (b)上的光解离核动能谱 (激光场的波长λ = 790 nm, 脉冲宽度τ = 40 fs)

    Fig. 2.  At the laser intensity of I1 = 4.0 × 1013 W/cm2, the kinetic energy resolved distributions of dissociation for the vibrational states ν = 3 (a) and ν = 6 (b) of HD+ molecule. The laser wavelength is 790 nm and the pulse duration is 40 fs, respectively.

    图 3  激光场强度I2 = 2.0 × 1014 W/cm2时, HD+分子在初始振动态ν = 3 (a)和ν = 6 (b)上的光解离核动能谱 (激光场的波长λ = 790 nm, 脉冲宽度τ = 40 fs)

    Fig. 3.  At the laser intensity of I2 = 2.0 × 1014 W/cm2, the kinetic energy resolved distributions of dissociation for the vibrational states ν = 3 (a) and ν = 6 (b) of HD+ molecule. The laser wavelength is 790 nm and the pulse duration is 40 fs, respectively.

    图 4  当激光场强度I1 = 4.0 × 1013 W/cm2 (蓝线)和I2 = 2.0 × 1014 W/cm2 (红线)时, HD+分子在初始振动态ν = 6上光解离通道(激光场的波长λ = 790 nm, 脉冲宽度τ = 40 fs)

    Fig. 4.  The related pathways of dissociation for the vibrational state ν = 6 of HD+ molecule at the laser intensities of 4.0 × 1013 W/cm2 (blue line) and 2.0 × 1014 W/cm2 (red line). The laser wavelength is 790 nm, the pulse duration is 40 fs.

  • [1]

    秦朝朝, 黄燕, 彭玉峰 2017 物理学报 66 193301Google Scholar

    Qin C C, Huang Y, Peng Y F 2017 Acta Phys. Sin. 66 193301Google Scholar

    [2]

    Kling M F, Siedschlag C, Verhoef A J, Khan J I, Schultze M, Uphues T, Ni Y, Uiberacker M, Drescher M, Krausz F, Vrakking M J J 2006 Science 312 246

    [3]

    Sun Z P, Yao H B, Wang C Y, Zhao, W K, Yang C L 2019 Laser Phys. Lett. 16 016001Google Scholar

    [4]

    Chang Z C, Li C M, Guo W, Yao H B 2018 Chin. Phys. B 27 053301Google Scholar

    [5]

    Yao H B, Guo W, Hoffmann M R, Han K L 2014 Phys. Rev. A 90 063418Google Scholar

    [6]

    刘灿东, 贾正茂, 郑颖辉, 葛晓春, 曾志男, 李儒新 2016 物理学报 65 223206Google Scholar

    Liu C D, Jia Z M, Zheng Y H, Ge X C, Zeng Z N, Li R X 2016 Acta Phys. Sin. 65 223206Google Scholar

    [7]

    姚洪斌, 李文亮, 张季, 彭敏 2014 物理学报 63 178201Google Scholar

    Yao H B, Li W L, Zhang J, Peng M 2014 Acta Phys. Sin. 63 178201Google Scholar

    [8]

    Yao H B, Zhen Y J 2011 Phys. Chem. Chem. Phys. 13 8900Google Scholar

    [9]

    Bucksbaum P H, Zavriyev A, Muller H G, Schumacher D W 1990 Phys. Rev. Lett. 64 1883Google Scholar

    [10]

    Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F, Langley A J 1999 Phys. Rev. Lett. 83 3625Google Scholar

    [11]

    Jolicard G, Atabek O 1992 Phys. Rev. A 46 5845Google Scholar

    [12]

    Frasinski L J, Plumridge J, Posthumus J H, Codling K, Taday P F, Divall E J, Langley A J 2001 Phys. Rev. Lett. 86 2541Google Scholar

    [13]

    Seideman T, Ivanov M Y, Corkum P B 1995 Phys. Rev. Lett. 75 2819Google Scholar

    [14]

    Posthumus J H 2004 Rep. Prog. Phys. 67 623Google Scholar

    [15]

    Orr P A, Williams I D, Greenwood J B, Turcu I C E, Bryan W A, Pedregosa-Gutierrez J, Walter C W 2007 Phys. Rev. Lett. 98 163001Google Scholar

    [16]

    Kiess A, Pavičić D, Hänsch T W, Figger H 2008 Phys. Rev. A 77 053401Google Scholar

    [17]

    McKenna J, Sayler A M, Gaire B, Johnson N G, Zohrabi M, Carnes K D, Esry B D, Ben-Itzhak I 2009 J. Phys. B: At. Mol. Opt. Phys. 42 121003Google Scholar

    [18]

    McKenna J, Sayler A M, Gaire B, Johnson N G, Parke E, Carnes K D, Esry B D, Ben-Itzhak I 2009 Phys. Rev. A 80 023421Google Scholar

    [19]

    Liu Z T, Yuan K J, Shu C C, Hu W H, Cong S L 2010 J. Phys. B: At. Mol. Opt. Phys. 43 055601Google Scholar

    [20]

    He H X, Lu R F, Zhang P Y, Guo Y H, Han K L, He G Z 2011 Phys. Rev. A 84 033418Google Scholar

    [21]

    He H X, Lu R F, Zhang P Y, Han K L, He G Z 2012 J. Chem. Phys. 136 024311Google Scholar

    [22]

    Lu R F, Zhang P Y, Han K L 2008 Phys. Rev. E 77 066701Google Scholar

    [23]

    Hu J, Han K L, He G Z 2005 Phys. Rev. Lett. 95 123001

    [24]

    Feuerstein B, Thumm U 2003 Phys. Rev. A 67 043405Google Scholar

    [25]

    姚洪斌, 张季, 彭敏, 李文亮 2014 物理学报 63 198202Google Scholar

    Yao H B, Zhang J, Peng M, Li W L 2014 Acta Phys. Sin. 63 198202Google Scholar

    [26]

    Yao H B, Zhao G J 2014 J. Phys. Chem. A 118 9173Google Scholar

    [27]

    McKenna J, Sayler A M, Anis F, Gaire B, Johnson N G, Parke E, Hua J J, Mashiko H, Nakamura C M, Moon E, Chang Z, Carnes K D, Esry B D, Ben-Itzhak I 2008 Phys. Rev. Lett. 100 133001Google Scholar

  • [1] 郭牧城, 汪福东, 胡肇高, 任苗苗, 孙伟业, 肖婉婷, 刘书萍, 钟满金. 微纳尺度稀土掺杂晶体的量子相干性能及其应用研究进展. 物理学报, 2023, 72(12): 120302. doi: 10.7498/aps.72.20222166
    [2] 何鑫, 李鑫焱, 李景辉, 张振华. Fe原子吸附的锑烯/WS2异质结的磁电子性质及调控效应. 物理学报, 2022, 71(21): 218503. doi: 10.7498/aps.71.20220949
    [3] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [4] 马东飞, 侯文清, 徐春华, 赵春雨, 马建兵, 黄星榞, 贾棋, 马璐, 刘聪, 李明, 陆颖. 脂质体包裹荧光受体方法研究α-突触核蛋白在磷脂膜上的结构和动态特征. 物理学报, 2020, 69(3): 038701. doi: 10.7498/aps.69.20191607
    [5] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理. 物理学报, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [6] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应. 物理学报, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [7] 张斯淇, 陆景彬, 刘晓静, 刘继平, 李宏, 梁禺, 张晓茹, 刘晗, 吴向尧, 郭义庆. 运用理想光子禁带模型实现对激发态原子系统演化的调控. 物理学报, 2018, 67(9): 094205. doi: 10.7498/aps.67.20172050
    [8] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控. 物理学报, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [9] 陈建宏, 郑小平, 张正荣, 吴学勇. 氢负离子在少周期激光场中解离时的干涉效应. 物理学报, 2016, 65(8): 083202. doi: 10.7498/aps.65.083202
    [10] 郑小丰, 樊群超, 孙卫国, 范志祥, 张燚, 付佳, 李博. 用差分收敛法研究NaLi分子部分电子态的完全振动能谱. 物理学报, 2015, 64(20): 203301. doi: 10.7498/aps.64.203301
    [11] 冯小静, 郭玮, 路兴强, 姚洪斌, 李月华. 三态K2分子飞秒含时光电子能谱的理论研究. 物理学报, 2015, 64(14): 143303. doi: 10.7498/aps.64.143303
    [12] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究. 物理学报, 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [13] 姚洪斌, 李文亮, 张季, 彭敏. K2分子在强激光场下的量子调控:缀饰态选择性分布. 物理学报, 2014, 63(17): 178201. doi: 10.7498/aps.63.178201
    [14] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究. 物理学报, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [15] 徐天宇, 何峰. H2+在阿秒以及双色飞秒激光脉冲中解离时电子位置的相干控制. 物理学报, 2013, 62(6): 068201. doi: 10.7498/aps.62.068201
    [16] 黄仙山, 刘海莲. 运用动态腔环境实现对原子自发辐射过程的调控. 物理学报, 2011, 60(3): 034205. doi: 10.7498/aps.60.034205
    [17] 黄仙山, 刘海莲, 羊亚平, 石云龙. 运用动态Lorentz库实现对激发态原子动力学特性的调控. 物理学报, 2011, 60(2): 024205. doi: 10.7498/aps.60.024205
    [18] 吴 勇, 刘 玲, 王建国. O3+与H2碰撞中非解离电荷转移过程的全量子计算. 物理学报, 2008, 57(2): 947-956. doi: 10.7498/aps.57.947
    [19] 郑敦胜, 郭锡坤. 高激发振动态氰化氢分子的解离研究. 物理学报, 2004, 53(10): 3347-3352. doi: 10.7498/aps.53.3347
    [20] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱. 物理学报, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
计量
  • 文章访问数:  5876
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-21
  • 修回日期:  2019-06-03
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回