搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

n体聚集过程和联合聚集过程的集团尺寸分布

薛瑜 孔令江 翁甲强

引用本文:
Citation:

n体聚集过程和联合聚集过程的集团尺寸分布

薛瑜, 孔令江, 翁甲强
cstr: 32037.14.aps.41.1406

CLUSTER SIZE DISTRIBUTION IN THE n-POLYMER COAGULATION PROCESSES AND THE JOINT COAGULATION PROCESSES

XUE YU, KONG LING-JIANG, WENG JIA-QIANG
cstr: 32037.14.aps.41.1406
PDF
导出引用
在线预览
  • 本文研究n体聚集过程和联合聚集过程的集团分布演化。从广义Smoluchovki方程出发,给出聚集核K(i1,i2,…,in)=A sumfrom i=1 to n i1+B(A,B均为常数)的显解;利用聚集核K(i1,i2,…,in)=(Ai1+B)(Ai2+B)…(Ain+B)和核K(i1,i2,…,in)=A sumfrom i=1 to n i1+B的方程之间的联系,得出核K(i1,i2,…,in)=S(i1)S(i2)…S(in)(SK=AK+B)的凝前解。而且,根据联合聚集动力学方程,讨论了聚集和型核分别为K2(i,j)=i+j,K3(i,j,k)=i+j+k的集团尺寸分布Cm(t)的长时行为,并将结论推广到一般的联合聚集过程。
    We have considered coagulation processes containing n-polymer interactions by means of a generalized Smoluchovski's equation, which is solved as a monodisperseinitial-value problem to the kernel: K(i1,i2,…,in)=A sumfrom i=1 to n i1+B, K(i1,i2,…,in)=A sumfrom i=1 to n i1. According to the connection between model K(i1,i2,…,in)=A sumfrom i=1 to n i1+B and K(i1,i2,…,in)= S(i1)S(i2)…S(in)(S=Ak+B),we obtain the pre-gel solution of the latter model. We also study a kind of joint coagulation process containing two-polymer and three-polymer collisions with the kernel K2(i, j)=i+j and K3(i,j,k) = i+j+k and get the explicit expression of Cm(t). Finally, we discuss the long-term behavior of Cm(t), Which can be extented to the general case.
计量
  • 文章访问数:  8287
  • PDF下载量:  548
  • 被引次数: 0
出版历程
  • 收稿日期:  1991-10-25
  • 刊出日期:  2005-07-03

/

返回文章
返回