搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击压缩下物质黏性系数与冲击波阵面扰动衰减特性研究

马小娟 刘福生 李一磊 张明建 李永宏 孙燕云 彭小娟 经福谦

引用本文:
Citation:

冲击压缩下物质黏性系数与冲击波阵面扰动衰减特性研究

马小娟, 刘福生, 李一磊, 张明建, 李永宏, 孙燕云, 彭小娟, 经福谦

Quantitative relation between the viscosity coefficient of substances under shock compression and the disturbance damping of shock front

Ma Xiao-Juan, Liu Fu-Sheng, Li Yi-Lei, Zhang Ming-Jian, Li Yong-Hong, Sun Yan-Yun, Peng Xiao-Juan, Jing Fu-Qian
PDF
导出引用
  • 为解决高温高压下物质黏性的测量问题,Sakharov曾提出一种冲击波小扰动实验方法,但人们一直未从理论上给出这类特定冲击波流场中扰动振幅衰减特性与黏性系数之间的量化关联.本文首次针对Mineev等的实验条件采用数值解方法定量地研究了金属铝(Al)中复杂流场演化过程、正弦形波阵面上相对扰动幅度的演化特征和它们的黏性效应,给出了相对扰动幅度衰减曲线的零点相对距离与黏性系数之间的定量关系.与Zaidel的均匀流场模型以及Miller等的非均匀流场模型相比,本文求解的流场演变问题已经接近实验的真实情况.利用本文数
    To solve the method of measuring the viscosity of related substance at high pressures and high temperatures, Sakharov has proposed an experimental method of small disturbance in shock wave. However, the quantitative relation between the disturbance amplitude damping and viscosity in Sakharov flow field has not been given by theory. In this paper, the propagation of complex flow in Al, the development of relative disturbance amplitude on sinusoidal shock front, and the effect of viscosity on it are studied, and the relation between the relative distance of zero-point on the disturbance amplitude damping curve and viscosity is given. Compared with Zaidel’s uniform flow model and Millers’ nonuniform flow model, our Sakharov flow is close to real experiment. From our numerical analysis method, Sakharov small disturbance experiment can give a credible viscosity coefficient. We analyze the experimental data of Mineev again, and find the effective viscosity coefficient of Al at shock pressure 31 GPa and strain rate 2×106 s-1 should be modified by 1100 Pa·s, which is half of the former analytic result.
    • 基金项目: 国家自然科学基金(批准号:10974160)和中央高校基本科研业务费(批准号:SWJTU09BR244)资助的课题.
    [1]

    Hide R 1967 Science 157 3784

    [2]

    Buffett B A 1997 Nature 388 6642

    [3]

    Pyrak-Nolte L J, Myer L R, Cook N G W 1990 J. Geophys. Res. 95 B6

    [4]

    Mineev V N, Funtikov A I 2004 Phys-Usp 47 671

    [5]

    Miller G H and Ahrens T J 1991 Rev. Mod. Phys. 63 919

    [6]

    Sakharov A D, Zaidel R M, Mineev V N 1964 Dokl. Akad. Nauk SSSR 159 1019

    [7]

    Zaidel R M 1967 Prikl. Matem. Tekh. Fiz. 4 30

    [8]

    Mineev V N, Mineev A V 1997 J. Phys.Ⅳ 7 C3-583

    [9]

    Mineev V N, Funtikov A I 2005 High Temp. 43 136

    [10]

    Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖、谭 华、胡建波、戴诚达、陈大年、王焕然 2008 物理学报 57 2352 ]

    [11]

    Hou R L, Peng J X, Jing F Q 2009 Acta Phys. Sin. 58 6413 (in Chinese)[侯日立、彭建祥、经福谦 2009物理学报58 6413]

    [12]

    Mitchell A C, Nellis W J 1982 J. Chem. Phys. 76 6273

    [13]

    Mader C H 1998 Numerical Modeling of Explosives and Propellants(Florida: CRC Press) p327

    [14]

    Grady D E 1981 Appl. Phys. Lett. 38 825

    [15]

    Chhabilidas L C, Asay J R 1979 J. Appl. Phys. 50 4

    [16]

    Boudet J F, Amarouchene Y, Kellay H 2008 Phys. Rev. Lett. 101 254503

    [17]

    Johnson J N, Baker L M 1969 J. Appl. Phys. 40 4321

  • [1]

    Hide R 1967 Science 157 3784

    [2]

    Buffett B A 1997 Nature 388 6642

    [3]

    Pyrak-Nolte L J, Myer L R, Cook N G W 1990 J. Geophys. Res. 95 B6

    [4]

    Mineev V N, Funtikov A I 2004 Phys-Usp 47 671

    [5]

    Miller G H and Ahrens T J 1991 Rev. Mod. Phys. 63 919

    [6]

    Sakharov A D, Zaidel R M, Mineev V N 1964 Dokl. Akad. Nauk SSSR 159 1019

    [7]

    Zaidel R M 1967 Prikl. Matem. Tekh. Fiz. 4 30

    [8]

    Mineev V N, Mineev A V 1997 J. Phys.Ⅳ 7 C3-583

    [9]

    Mineev V N, Funtikov A I 2005 High Temp. 43 136

    [10]

    Yu Y Y, Tan H, Hu J B, Dai C D, Chen D N, Wang H R 2008 Acta Phys. Sin. 57 2352 (in Chinese)[俞宇颖、谭 华、胡建波、戴诚达、陈大年、王焕然 2008 物理学报 57 2352 ]

    [11]

    Hou R L, Peng J X, Jing F Q 2009 Acta Phys. Sin. 58 6413 (in Chinese)[侯日立、彭建祥、经福谦 2009物理学报58 6413]

    [12]

    Mitchell A C, Nellis W J 1982 J. Chem. Phys. 76 6273

    [13]

    Mader C H 1998 Numerical Modeling of Explosives and Propellants(Florida: CRC Press) p327

    [14]

    Grady D E 1981 Appl. Phys. Lett. 38 825

    [15]

    Chhabilidas L C, Asay J R 1979 J. Appl. Phys. 50 4

    [16]

    Boudet J F, Amarouchene Y, Kellay H 2008 Phys. Rev. Lett. 101 254503

    [17]

    Johnson J N, Baker L M 1969 J. Appl. Phys. 40 4321

计量
  • 文章访问数:  7227
  • PDF下载量:  675
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-13
  • 修回日期:  2009-12-18
  • 刊出日期:  2010-07-15

/

返回文章
返回