搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强耦合光机械腔中的简正模式分裂和冷却

陈华俊 米贤武

强耦合光机械腔中的简正模式分裂和冷却

陈华俊, 米贤武
PDF
导出引用
  • 研究由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的腔光机械动力学行为. 通过量子朗之万方程具体研究了机械振子的涨落光谱、机械阻尼与共振频移和基态冷却. 随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且数值模拟结果和实验结果相符合. 同时推导了有效机械阻尼和共振频移. 红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大. 此外,引入一种近似机制来研究振子的基态冷却,并且考虑在解析边带机制下简正模式分裂对机械振子冷却的影响. 最后,数值讨论了初始浴温度、输入激光功率和机械品质因数这三个因素对机械振子冷却的影响.
    • 基金项目: 国家自然科学基金(批准号:10647132)和湖南省教育厅科研基金(批准号:10A100)资助的课题.
    [1]

    Aspelmeyer M, Groblacher S, Hammerer K, Kiesel N 2010 J. Opt. Soc. Am. B 27 A189

    [2]

    La Haye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [3]
    [4]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [5]
    [6]
    [7]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [8]

    Schwab K C, Roukes M L 2005 Phys. Today 58 36

    [9]
    [10]

    Leggett A J 2002 J. Phys: Condens. Matter 14 R415

    [11]
    [12]
    [13]

    Marshall W, Simon C, Penrose R, Bouwmeester D 2003 Phys. Rev. Lett. 91 130401

    [14]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [15]
    [16]
    [17]

    Gigan S, Bhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [18]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [19]
    [20]
    [21]

    Poggio M, Degen C L, Mamin H J, Rugar D 2007 Phys. Rev. Lett. 99 017201

    [22]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [23]
    [24]

    Bhattacharya M, Meystre P 2007 Phys. Rev. Lett. 99 073601

    [25]
    [26]
    [27]

    Schliesser A, Del'Haye P, Nooshi N, Vahala K L, Kippenberg T J 2006 Phys. Rev. Lett. 97 243905

    [28]
    [29]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901

    [30]

    Marquardt F, Chen J P, Clerk A, Girvin S M 2007 Phys. Rev. Lett. 99 093902

    [31]
    [32]
    [33]

    Ma R, Schliesser A, Del'Haye P, Dabirian A, Anetsberger G, Kippenberg T J 2007 Opt. Lett. 32 2200

    [34]
    [35]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [36]
    [37]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [38]

    Metzger C H, Karrai K 2004 Nature 432 1002

    [39]
    [40]

    Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C, Mavalvala N 2007 Phys. Rev. Lett. 98 150802

    [41]
    [42]
    [43]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415

    [44]
    [45]

    Park Y S, Wang H L 2009 Nat. Phys. 5 489

    [46]
    [47]

    Li Y, Wang Y D, Xue F, Bruder C 2008 Phys. Rev. B 78 134301

    [48]

    Tian L 2009 Phys. Rev. B 79 193407

    [49]
    [50]
    [51]

    Grlacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [52]

    Dobrindt J M, Wilson-Rae I, Kippenberg T J 2008 Phys. Rev. Lett. 101 263602

    [53]
    [54]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 80 033807

    [55]
    [56]

    Paternostro M, Gigan S, Kim M S, Blaser F, Bohm H R, Aspelmeyer M 2006 New J. Phys. 8 107

    [57]
    [58]

    Gardiner C W, Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p50

    [59]
    [60]
    [61]

    Giovannetti V, Vitali D 2001 Phys. Rev. A 63 023812

    [62]
    [63]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer) p296

    [64]
    [65]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [66]

    Teufel J D, Regal C A, Lehnert K W 2008 New J. Phys. 10 095002

    [67]
    [68]
    [69]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804

    [70]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [71]
    [72]
    [73]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132

    [74]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [75]
    [76]
    [77]

    Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S, Mavalvala N 2007 Phys. Rev. Lett. 99 160801

    [78]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [79]
  • [1]

    Aspelmeyer M, Groblacher S, Hammerer K, Kiesel N 2010 J. Opt. Soc. Am. B 27 A189

    [2]

    La Haye M D, Buu O, Camarota B, Schwab K C 2004 Science 304 74

    [3]
    [4]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [5]
    [6]
    [7]

    Caves C M 1980 Phys. Rev. Lett. 45 75

    [8]

    Schwab K C, Roukes M L 2005 Phys. Today 58 36

    [9]
    [10]

    Leggett A J 2002 J. Phys: Condens. Matter 14 R415

    [11]
    [12]
    [13]

    Marshall W, Simon C, Penrose R, Bouwmeester D 2003 Phys. Rev. Lett. 91 130401

    [14]

    Kippenberg T J, Vahala K J 2008 Science 321 1172

    [15]
    [16]
    [17]

    Gigan S, Bhm H R, Paternostro M, Blaser F, Langer G, Hertzberg J B, Schwab K C, Bauerle D, Aspelmeyer M, Zeilinger A 2006 Nature 444 67

    [18]

    Kleckner D, Bouwmeester D 2006 Nature 444 75

    [19]
    [20]
    [21]

    Poggio M, Degen C L, Mamin H J, Rugar D 2007 Phys. Rev. Lett. 99 017201

    [22]

    Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A 2006 Nature 444 71

    [23]
    [24]

    Bhattacharya M, Meystre P 2007 Phys. Rev. Lett. 99 073601

    [25]
    [26]
    [27]

    Schliesser A, Del'Haye P, Nooshi N, Vahala K L, Kippenberg T J 2006 Phys. Rev. Lett. 97 243905

    [28]
    [29]

    Wilson-Rae I, Nooshi N, Zwerger W, Kippenberg T J 2007 Phys. Rev. Lett. 99 093901

    [30]

    Marquardt F, Chen J P, Clerk A, Girvin S M 2007 Phys. Rev. Lett. 99 093902

    [31]
    [32]
    [33]

    Ma R, Schliesser A, Del'Haye P, Dabirian A, Anetsberger G, Kippenberg T J 2007 Opt. Lett. 32 2200

    [34]
    [35]

    Thompson J D, Zwickl B M, Jayich A M, Marquardt F, Girvin S M, Harris J G E 2008 Nature 452 72

    [36]
    [37]

    Wilson-Rae I, Nooshi N, Dobrindt J, Kippenberg T J, Zwerger W 2008 New J. Phys. 10 095007

    [38]

    Metzger C H, Karrai K 2004 Nature 432 1002

    [39]
    [40]

    Corbitt T, Chen Y, Innerhofer E, Muller-Ebhardt H, Ottaway D, Rehbein H, Sigg D, Whitcomb S, Wipf C, Mavalvala N 2007 Phys. Rev. Lett. 98 150802

    [41]
    [42]
    [43]

    Schliesser A, Riviere R, Anetsberger G, Arcizet O, Kippenberg T J 2008 Nat. Phys. 4 415

    [44]
    [45]

    Park Y S, Wang H L 2009 Nat. Phys. 5 489

    [46]
    [47]

    Li Y, Wang Y D, Xue F, Bruder C 2008 Phys. Rev. B 78 134301

    [48]

    Tian L 2009 Phys. Rev. B 79 193407

    [49]
    [50]
    [51]

    Grlacher S, Hammerer K, Vanner M R, Aspelmeyer M 2009 Nature 460 724

    [52]

    Dobrindt J M, Wilson-Rae I, Kippenberg T J 2008 Phys. Rev. Lett. 101 263602

    [53]
    [54]

    Huang S M, Agarwal G S 2009 Phys. Rev. A 80 033807

    [55]
    [56]

    Paternostro M, Gigan S, Kim M S, Blaser F, Bohm H R, Aspelmeyer M 2006 New J. Phys. 8 107

    [57]
    [58]

    Gardiner C W, Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag) p50

    [59]
    [60]
    [61]

    Giovannetti V, Vitali D 2001 Phys. Rev. A 63 023812

    [62]
    [63]

    Walls D F, Milburn G J 1994 Quantum Optics (Berlin: Springer) p296

    [64]
    [65]

    DeJesus E X, Kaufman C 1987 Phys. Rev. A 35 5288

    [66]

    Teufel J D, Regal C A, Lehnert K W 2008 New J. Phys. 10 095002

    [67]
    [68]
    [69]

    Genes C, Vitali D, Tombesi P, Gigan S, Aspelmeyer M 2008 Phys. Rev. A 77 033804

    [70]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [71]
    [72]
    [73]

    Thompson R J, Rempe G, Kimble H J 1992 Phys. Rev. Lett. 68 1132

    [74]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [75]
    [76]
    [77]

    Corbitt T, Wipf C, Bodiya T, Ottaway D, Sigg D, Smith N, Whitcomb S, Mavalvala N 2007 Phys. Rev. Lett. 99 160801

    [78]

    Verlot P, Tavernarakis A, Briant T, Cohadon P F, Heidmann A 2010 Phys. Rev. Lett. 104 133602

    [79]
  • 引用本文:
    Citation:
计量
  • 文章访问数:  3406
  • PDF下载量:  830
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-08
  • 修回日期:  2011-08-09
  • 刊出日期:  2011-06-05

强耦合光机械腔中的简正模式分裂和冷却

  • 1. 吉首大学物理科学与信息工程学院,吉首 416000
    基金项目: 

    国家自然科学基金(批准号:10647132)和湖南省教育厅科研基金(批准号:10A100)资助的课题.

摘要: 研究由辐射压力与驱动Fabry-Perot光学腔相耦合而产生的腔光机械动力学行为. 通过量子朗之万方程具体研究了机械振子的涨落光谱、机械阻尼与共振频移和基态冷却. 随着输入激光功率的增加,振子的涨落光谱呈现简正模式分裂的现象,并且数值模拟结果和实验结果相符合. 同时推导了有效机械阻尼和共振频移. 红移边带导致了机械模的冷却,蓝移边带引起了机械模的放大. 此外,引入一种近似机制来研究振子的基态冷却,并且考虑在解析边带机制下简正模式分裂对机械振子冷却的影响. 最后,数值讨论了初始浴温度、输入激光功率和机械品质因数这三个因素对机械振子冷却的影响.

English Abstract

参考文献 (79)

目录

    /

    返回文章
    返回