搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲击荷载下颗粒物质缓冲性能的试验研究

季顺迎 李鹏飞 陈晓东

引用本文:
Citation:

冲击荷载下颗粒物质缓冲性能的试验研究

季顺迎, 李鹏飞, 陈晓东

Experiments on shock-absorbing capacity of granular matter under impact load

Ji Shun-Ying, Li Peng-Fei, Chen Xiao-Dong
PDF
导出引用
  • 颗粒物质是一种复杂的能量耗散体系. 颗粒间的摩擦和黏滞作用可使冲击荷载引起的能量有效衰减, 颗粒间的力链结构又可将瞬时局部冲击荷载进行空间扩展和时间延长, 达到良好的缓冲效果. 为研究颗粒物质对冲击荷载的缓冲性能, 本文采用重力作用下球体冲击筒内颗粒物质的试验系统, 研究了筒体底部作用力在颗粒材料、颗粒厚度等因素影响下的变化规律. 试验结果表明: 非规则颗粒具有更加良好的缓冲性能, 粗颗粒的缓冲性能略高于细颗粒. 颗粒厚度H是影响缓冲性能的重要因素, 并存在一个临界厚度Hc. 当HHc时, 缓冲性能随H的增加而增强; 当H>Hc时, H对缓冲效果的影响不再显著. 以上研究是在同一冲击能量下进行的, 而对于不同冲击能量下的Hc还需要深入开展. 通过颗粒物质对冲击荷载缓冲性能的试验研究, 可揭示颗粒材料的基本物理力学行为, 为其在缓冲减振领域中的应用提供依据.
    Granular matter is a complex energy dissipation system. The friction and the viscous contacts among particles can dissipate effectively the system energy caused by external impact load. The force chain structure in granular system can extend the local impact in spatial dimension and expand the instantaneous impact in temporal dimension, thus to obtain the effective shock-absorbing effect. To investigate the absorbing capacity of granular matter under an impact load, in the present study, we develop an experimental system, in which a rock ball impacts granular matter in a cylinder under gravity, and the impact force on the cylinder bottom is measured with three load cells. The influences of particle size, material propery, thickness of granular matter on shock-absorbing capacity are discussed. The results show that irregular particles have more shock absorbing capacity, while the large-size particles have a slightly higher shock absorbing capability than the small-size particles. The thickness of granular matter, H, is a key parameter to affect the shock-absorbing. Critical thickness, Hc, is obtained in the experiments. The shock-absorbing capacity of granular matter is enhanced with H increasing when HHc, while H has little influence on shock-absorbing when H>Hc. The resutls above are obtained with constant impact energy. Critical thickness Hc should be a function of impact energy and will be determined in the next study. With the experiments on shock-absorbing capacity of granular matter, it can reveal basic mechanical behaviors of granular materials and be applied in mechanical vibration absorptions.
    • 基金项目: 国家自然科学基金(批准号: 11172063);国家重点基础研究发展计划 (批准号: 2010CB731502)和新世纪优秀人才支持计划(批准号: NCET-08-0072)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11172063), the National Basic Research Program of China (Grant No. 2010CB731502), and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-08-0072).
    [1]

    Lu K Q, Liu J X 2004 Physics 33 629 (in Chinese) [陆坤权, 刘寄星 2004 物理 33 629]

    [2]

    Sun Q C, Wang G Q 2009 Introduction of Particle Material Mechanics (1st Ed.) (Beijing: Science Press) p3 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论. (北京: 科学出版社) 第3页]

    [3]

    Ji S Y 2007 Chinese Journal of Theoretical and Applied Mechanics 39 223 (in Chinese) [季顺迎 2007 力学学报 39 223]

    [4]

    Ji S Y, Shen H H 2006 Journal of Engineering Mechanics 132 1252

    [5]

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚, 王光谦 2008 物理学报 57 4667]

    [6]

    He S M, Wu Y, Li X P 2008 Engineering Mechanics 25 19 (in Chinese) [何思明, 吴永, 李新坡 2008 工程力学 25 19]

    [7]

    Du Y C, Wang S L, Zhang J L 2010 International Journal of Impact Engineering 37 309

    [8]

    Wu C Y, Li L Y, Thornton C 2005 International Journal of Impact Engineering 32 593

    [9]

    Etsion I, Kligerman Y, Kadin Y 2005 Journal of Solids and Structures 42 3716

    [10]

    Liu L, Zhang L, Liao S 2010 Science in China 53 892

    [11]

    Mueth D M, Jaeger H M, Nagel S R 1998 Phys. Rev. E 57 3164

    [12]

    Goldenberg C, Goldhirsch 2002 Phys. Rev. Lett. 89 084302

    [13]

    Luding S 2005 Nature 435 159

    [14]

    Goldman D I, Umbanhowar P 2008 Phys. Rev. E 77 021308

    [15]

    Uehara J S, Ambroso M A, Ojha R P, Durian D J 2003 Phys. Rev. Lett. 90 194301

    [16]

    Pacheco V F, Ruiz J C S 2009 Phys. Rev. E 80 060301

    [17]

    Ogale S B, Shinde S R, Karve P A, Ogale A S, Kulkarni A, Athawale A, Phadke A, Thakurdas R 2005 Physica A 362 181

    [18]

    Antypov D, Elliott J A 2011 Phys. Rev. E 84 021303

    [19]

    Katsuragi H, Durian D J 2007 Nature Phys. 3 420

    [20]

    Zhao Z, Liu C S 2008 Phys. Rev. E 78 031307

    [21]

    Addiss J, Collins A, Bobaru F, Promratana K, Proud W G 2009 Dymat International Conferences Brussels Belgium, September 7-11, 2009 p59

    [22]

    Duncan M R, Wassgren C R, Krousgrill C M 2005 Jounal of Sound and Vibration 286 123

    [23]

    Mao K M, Wang M Y, Xu Z W, Chen T N 2004 Powder Technol. 142 154

    [24]

    Xia Z W, Shan Y C, Liu X D 2007 Journal of Aerospace Power 10 1737 (in Chinese) [夏兆旺, 单颖春, 刘献栋 2007 航空动力学报 10 1737]

    [25]

    Remillat C 2007 Mechanics of Materials 39 525

    [26]

    Seguin A, Bertho Y, Gondret P 2008 Phys. Rev. E 78 010301

  • [1]

    Lu K Q, Liu J X 2004 Physics 33 629 (in Chinese) [陆坤权, 刘寄星 2004 物理 33 629]

    [2]

    Sun Q C, Wang G Q 2009 Introduction of Particle Material Mechanics (1st Ed.) (Beijing: Science Press) p3 (in Chinese) [孙其诚, 王光谦 2009 颗粒物质力学导论. (北京: 科学出版社) 第3页]

    [3]

    Ji S Y 2007 Chinese Journal of Theoretical and Applied Mechanics 39 223 (in Chinese) [季顺迎 2007 力学学报 39 223]

    [4]

    Ji S Y, Shen H H 2006 Journal of Engineering Mechanics 132 1252

    [5]

    Sun Q C, Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese) [孙其诚, 王光谦 2008 物理学报 57 4667]

    [6]

    He S M, Wu Y, Li X P 2008 Engineering Mechanics 25 19 (in Chinese) [何思明, 吴永, 李新坡 2008 工程力学 25 19]

    [7]

    Du Y C, Wang S L, Zhang J L 2010 International Journal of Impact Engineering 37 309

    [8]

    Wu C Y, Li L Y, Thornton C 2005 International Journal of Impact Engineering 32 593

    [9]

    Etsion I, Kligerman Y, Kadin Y 2005 Journal of Solids and Structures 42 3716

    [10]

    Liu L, Zhang L, Liao S 2010 Science in China 53 892

    [11]

    Mueth D M, Jaeger H M, Nagel S R 1998 Phys. Rev. E 57 3164

    [12]

    Goldenberg C, Goldhirsch 2002 Phys. Rev. Lett. 89 084302

    [13]

    Luding S 2005 Nature 435 159

    [14]

    Goldman D I, Umbanhowar P 2008 Phys. Rev. E 77 021308

    [15]

    Uehara J S, Ambroso M A, Ojha R P, Durian D J 2003 Phys. Rev. Lett. 90 194301

    [16]

    Pacheco V F, Ruiz J C S 2009 Phys. Rev. E 80 060301

    [17]

    Ogale S B, Shinde S R, Karve P A, Ogale A S, Kulkarni A, Athawale A, Phadke A, Thakurdas R 2005 Physica A 362 181

    [18]

    Antypov D, Elliott J A 2011 Phys. Rev. E 84 021303

    [19]

    Katsuragi H, Durian D J 2007 Nature Phys. 3 420

    [20]

    Zhao Z, Liu C S 2008 Phys. Rev. E 78 031307

    [21]

    Addiss J, Collins A, Bobaru F, Promratana K, Proud W G 2009 Dymat International Conferences Brussels Belgium, September 7-11, 2009 p59

    [22]

    Duncan M R, Wassgren C R, Krousgrill C M 2005 Jounal of Sound and Vibration 286 123

    [23]

    Mao K M, Wang M Y, Xu Z W, Chen T N 2004 Powder Technol. 142 154

    [24]

    Xia Z W, Shan Y C, Liu X D 2007 Journal of Aerospace Power 10 1737 (in Chinese) [夏兆旺, 单颖春, 刘献栋 2007 航空动力学报 10 1737]

    [25]

    Remillat C 2007 Mechanics of Materials 39 525

    [26]

    Seguin A, Bertho Y, Gondret P 2008 Phys. Rev. E 78 010301

  • [1] 周益娴. 基于连续数值模拟的筒仓卸载过程中颗粒物压强及其速度场分析. 物理学报, 2019, 68(13): 134701. doi: 10.7498/aps.68.20182205
    [2] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [3] 程琦, 冉宪文, 刘苹, 汤文辉, Raphael Blumenfeld. 颗粒物质内自旋小球运动行为的数值模拟研究. 物理学报, 2018, 67(1): 014702. doi: 10.7498/aps.67.20171459
    [4] 许聪慧, 张国华, 钱志恒, 赵雪丹. 水平激励下颗粒物质的有效质量及耗散功率的研究. 物理学报, 2016, 65(23): 234501. doi: 10.7498/aps.65.234501
    [5] 张攀, 赵雪丹, 张国华, 张祺, 孙其诚, 侯志坚, 董军军. 垂直载荷下颗粒物质的声波探测和非线性响应. 物理学报, 2016, 65(2): 024501. doi: 10.7498/aps.65.024501
    [6] 季顺迎, 樊利芳, 梁绍敏. 基于离散元方法的颗粒材料缓冲性能及影响因素分析. 物理学报, 2016, 65(10): 104501. doi: 10.7498/aps.65.104501
    [7] 何菲菲, 彭政, 颜细平, 蒋亦民. 振动颗粒混合物中的周期性分聚现象与能量耗散. 物理学报, 2015, 64(13): 134503. doi: 10.7498/aps.64.134503
    [8] 苏涛, 冯耀东, 赵宏武, 黄德财, 孙刚. 对颗粒物质运动的一致性进行控制的随机力场. 物理学报, 2013, 62(16): 164502. doi: 10.7498/aps.62.164502
    [9] 何克晶, 张金成, 周晓强. 运动物体在颗粒物质中的动力学过程及最大穿透深度仿真研究. 物理学报, 2013, 62(13): 130204. doi: 10.7498/aps.62.130204
    [10] 韩红, 姜泽辉, 李翛然, 吕晶, 张睿, 任杰骥. 器壁滑动摩擦力对受振颗粒体系中冲击力倍周期分岔过程的影响. 物理学报, 2013, 62(11): 114501. doi: 10.7498/aps.62.114501
    [11] 彭政, 蒋亦民, 刘锐, 厚美瑛. 垂直振动激发下颗粒物质的能量耗散. 物理学报, 2013, 62(2): 024502. doi: 10.7498/aps.62.024502
    [12] 陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星. 以颗粒物理原理认识地震地震成因、地震前兆和地震预测. 物理学报, 2012, 61(11): 119103. doi: 10.7498/aps.61.119103
    [13] 彭亚晶, 张卓, 王勇, 刘小嵩. 振动颗粒物质“巴西果”分离效应实验和理论研究. 物理学报, 2012, 61(13): 134501. doi: 10.7498/aps.61.134501
    [14] 毕忠伟, 孙其诚, 刘建国, 金峰, 张楚汉. 双轴压缩下颗粒物质剪切带的形成与发展. 物理学报, 2011, 60(3): 034502. doi: 10.7498/aps.60.034502
    [15] 姜泽辉, 荆亚芳, 赵海发, 郑瑞华. 振动颗粒物质中倍周期运动对尺寸分离的影响. 物理学报, 2009, 58(9): 5923-5929. doi: 10.7498/aps.58.5923
    [16] 张 航, 郭蕴博, 陈 骁, 王 端, 程鹏俊. 颗粒物质在冲击作用下的堆积分布. 物理学报, 2007, 56(4): 2030-2036. doi: 10.7498/aps.56.2030
    [17] 姜泽辉, 王运鹰, 吴 晶. 窄振动颗粒床中的运动模式. 物理学报, 2006, 55(9): 4748-4753. doi: 10.7498/aps.55.4748
    [18] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [19] 姜泽辉, 李 斌, 赵海发, 王运鹰, 戴智斌. 竖直振动颗粒物厚层中冲击力分岔现象. 物理学报, 2005, 54(3): 1273-1278. doi: 10.7498/aps.54.1273
    [20] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力. 物理学报, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
计量
  • 文章访问数:  6790
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-05
  • 修回日期:  2012-03-06
  • 刊出日期:  2012-09-05

/

返回文章
返回