搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属铁中空位团簇演化行为的相场研究

梁林云 吕广宏

引用本文:
Citation:

金属铁中空位团簇演化行为的相场研究

梁林云, 吕广宏

Phase-field modeling of vacancy cluster evolution in Fe

Liang Lin-Yun, Lü Guang-Hong
PDF
导出引用
  • 构建了一个定量化的相场模型, 用于研究金属铁(Fe)中空位团簇的演化行为. 基于理想气体自由能函数构造了体系的总能量, 并给出了将相场模型中的计算参数与实验数据相结合的方法. 此相场模型能够定量描述空位团簇在金属Fe中生长和粗化的过程以及晶界对于空位团簇演化过程的影响. 这些结果为进一步研究金属Fe中氢/氦等杂质原子与空位之间的相互作用及其演化行为提供了途径.
    A quantitative phase-field model is developed to study the evolution of vacancy cluster in Fe. Total energy of the system is constructed based on the assumption of ideal gas state equation, and an approach to linking the computational parameters in the phase-field model to the experimental properties of Fe is provided. Such a phase filed model is employed to quantitatively investigate the nucleations, growths, and coalescences of voids in single and polycrystalline Fe. The effects of grain boundary on voids evolution are also investigated. These results provide a way of further studying the evolution behaviors of both H/He gas atoms and voids in Fe.
    • 基金项目: 国家自然科学基金国际合作与交流项目(批准号:51061130558)和中央高校基本科研业务费专项资金资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51061130558), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Klueh R L, Alexander D J 1995 J. Nucl. Mater. 218 151

    [2]

    Jung P, Henry J, Chen J, Brachet J C 2003 J. Nucl. Mater. 318 241

    [3]

    Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103

    [4]

    Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusi. 50 115010

    [5]

    Alkhamees A, Liu Y L, Zhou H B, Zhang Y, Lu G H 2009 J. Nucl. Mater. 309 508

    [6]

    Li X C, Shu X L, Liu Y N, Gao F, Lu G H 2011 J. Nucl. Mater. 48 12

    [7]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [8]

    Hu S Y, Henager C H, Heinisch H L, Stan M, Baskes M I, Valone S M 2009 J. Nucl. Mater. 392 292

    [9]

    Hu S Y, Henager C H 2009 J. Nucl. Mater. 394 155

    [10]

    Rokkam S, El-Azab A, Millett P, Wolf D 2009 Model Simul. Mater. Sci. Eng. 17 064002

    [11]

    Millett P C, Rokkam S, El-Azab A, Tonks M, Wolf D 2009 Model. Simul. Mater. Sci. Eng. 17 064003

    [12]

    Stan M, Ramirez J C, Cristea P, Hu S Y, Deo C, Uberuaga B P, Srivilliputhur S, Rudin S P, Wills J M 2007 J. Allo. Comput. 444-445 415

    [13]

    Golubov S I, Stoller R E, Zinkle S J, Ovcharenko A M 2007J. Nucl. Mater. 361 149

    [14]

    Kmetyk L N, Sommer W F, Weertman J 1981 J. Nucl. Mater. 103-104 1409

    [15]

    Chen L Q, Shen J 1998 Comput. Phys. Commu. 108 147

    [16]

    Ono K, Arakawa K, Hojou K 2002 J. Nucl. Mater. 307 1507

    [17]

    Brass A M, Chanfreau A, Chene J 1994 Metall. Etallu. Mater. Trans. A 25A 2117

    [18]

    Zhao F, Qiao J S, Huang Y, Wan F R, Ohnuki S 2008 Mater. Character. 59 344

    [19]

    Krill C E, Chen L Q 2002 Acta Mater. 50 3957

    [20]

    Dudarev S L, Semenov A A, Woo C H 2003 Phy. Rev. B 67 094103

    [21]

    Vaidya W V 1983 J. Nucl. Mater. 113 219

  • [1]

    Klueh R L, Alexander D J 1995 J. Nucl. Mater. 218 151

    [2]

    Jung P, Henry J, Chen J, Brachet J C 2003 J. Nucl. Mater. 318 241

    [3]

    Liu Y L, Zhang Y, Zhou H B, Lu G H, Liu F, Luo G N 2009 Phys. Rev. B 79 172103

    [4]

    Zhou H B, Liu Y L, Jin S, Zhang Y, Luo G N, Lu G H 2010 Nucl. Fusi. 50 115010

    [5]

    Alkhamees A, Liu Y L, Zhou H B, Zhang Y, Lu G H 2009 J. Nucl. Mater. 309 508

    [6]

    Li X C, Shu X L, Liu Y N, Gao F, Lu G H 2011 J. Nucl. Mater. 48 12

    [7]

    Chen L Q 2002 Annu. Rev. Mater. Res. 32 113

    [8]

    Hu S Y, Henager C H, Heinisch H L, Stan M, Baskes M I, Valone S M 2009 J. Nucl. Mater. 392 292

    [9]

    Hu S Y, Henager C H 2009 J. Nucl. Mater. 394 155

    [10]

    Rokkam S, El-Azab A, Millett P, Wolf D 2009 Model Simul. Mater. Sci. Eng. 17 064002

    [11]

    Millett P C, Rokkam S, El-Azab A, Tonks M, Wolf D 2009 Model. Simul. Mater. Sci. Eng. 17 064003

    [12]

    Stan M, Ramirez J C, Cristea P, Hu S Y, Deo C, Uberuaga B P, Srivilliputhur S, Rudin S P, Wills J M 2007 J. Allo. Comput. 444-445 415

    [13]

    Golubov S I, Stoller R E, Zinkle S J, Ovcharenko A M 2007J. Nucl. Mater. 361 149

    [14]

    Kmetyk L N, Sommer W F, Weertman J 1981 J. Nucl. Mater. 103-104 1409

    [15]

    Chen L Q, Shen J 1998 Comput. Phys. Commu. 108 147

    [16]

    Ono K, Arakawa K, Hojou K 2002 J. Nucl. Mater. 307 1507

    [17]

    Brass A M, Chanfreau A, Chene J 1994 Metall. Etallu. Mater. Trans. A 25A 2117

    [18]

    Zhao F, Qiao J S, Huang Y, Wan F R, Ohnuki S 2008 Mater. Character. 59 344

    [19]

    Krill C E, Chen L Q 2002 Acta Mater. 50 3957

    [20]

    Dudarev S L, Semenov A A, Woo C H 2003 Phy. Rev. B 67 094103

    [21]

    Vaidya W V 1983 J. Nucl. Mater. 113 219

计量
  • 文章访问数:  5676
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-05
  • 修回日期:  2013-06-04
  • 刊出日期:  2013-09-05

/

返回文章
返回