搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二次偏振调制的变频测距方法与系统实现

黑克非 于晋龙 王菊 王文睿 贾石 吴穹 薛纪强

基于二次偏振调制的变频测距方法与系统实现

黑克非, 于晋龙, 王菊, 王文睿, 贾石, 吴穹, 薛纪强
PDF
导出引用
  • 由于鉴相精度限制、电路等引入的附加相移干扰等因素,传统相位测距技术精度的提高受到了限制. 采用二次偏振调制技术对相位测距技术进行了改进. 利用二次偏振调制方法能够直接在相位调制器上对两次调制信号的相位差进行解调,大幅度简化了系统的复杂程度. 采用变频方法替代传统的鉴相方法,从而系统的测量精度不再受鉴相问题的困扰. 从理论上得到系统输出光强与调制频率成正余弦关系,并进行了实验验证. 基于变频测距的实验中,系统频率的稳定度优于10-6,测量精度可以达到±10.6 μm(被测距离为4.5 m). 并对一段长200 m的光纤进行了实际测量,得到了清晰的调制频率与系统输出光强的曲线.
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB315704)和高等学校博士学科点专项科研基金(批准号:20120032120029,20120032130010)资助的课题.
    [1]

    White N 2000 Nature 407 146

    [2]

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603 (in Chinese)[邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603]

    [3]

    Shelus P J 2001 Surv. Geophys. 22 517

    [4]

    Qing P, Chen W, Song Y J, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 240601 (in Chinese)[秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 物理学报 61 240601]

    [5]

    Smullin L D, Fiocco G 1962 Nature 194 1267

    [6]

    Bobroff N 1993 Meas. Sci. Technol. 4 907

    [7]

    Liu M, Yang X Y, Liu C J 2012 Chin. J. Lasers 39 0208004 (in Chinese) [刘邈,杨学友,刘常杰 2012 中国激光 39 0208004]

    [8]

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601 (in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601]

    [9]

    Amann M, Bosch T, Myllyla R, Rioux M, Lescure M 2001 Opt. Eng. 40 10

    [10]

    Xu H, Li X Y, Xiao X, Li Z Y, Yu Y D, Yu J Z 2013 Chin. Phys. B 22 114212

    [11]

    Hirota Y, Hattori R 2006 Opt. Express 14 4486

    [12]

    Bosch T, Lescure M 1997 IEEE Trans. Instrum. Meas. 46 1224

    [13]

    Guo D M, Wang M 2007 Appl. Opt. 46 1486

    [14]

    Qin J X, Xi L X, Zhang X G, Tian F 2011 Chin. Phys. B 20 114201

    [15]

    Lo Y, Hsu P 2002 Opt. Eng. 41 2764

    [16]

    Poujouly S, Journet B 2002 J. Opt. A: Pure Appl. Opt. 4 s356

    [17]

    Yoon H, Hong J, Huisung K, Kyihwan P 2008 International Conference on Control, Automation and Systems Seoul, Korea, October 14-17, 2008 p2280

    [18]

    Yu D Y, Tan H Y 2005 The Optical Engineering (Beijing: Machinery Industry Press) p306 (in Chinese) [郁道银, 谈恒英 2005 工程光学 (北京: 机械工业出版社) 第306页]

  • [1]

    White N 2000 Nature 407 146

    [2]

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603 (in Chinese)[邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603]

    [3]

    Shelus P J 2001 Surv. Geophys. 22 517

    [4]

    Qing P, Chen W, Song Y J, Hu M L, Chai L, Wang Q Y 2012 Acta Phys. Sin. 61 240601 (in Chinese)[秦鹏, 陈伟, 宋有建, 胡明列, 柴路, 王清月 2012 物理学报 61 240601]

    [5]

    Smullin L D, Fiocco G 1962 Nature 194 1267

    [6]

    Bobroff N 1993 Meas. Sci. Technol. 4 907

    [7]

    Liu M, Yang X Y, Liu C J 2012 Chin. J. Lasers 39 0208004 (in Chinese) [刘邈,杨学友,刘常杰 2012 中国激光 39 0208004]

    [8]

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601 (in Chinese)[王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601]

    [9]

    Amann M, Bosch T, Myllyla R, Rioux M, Lescure M 2001 Opt. Eng. 40 10

    [10]

    Xu H, Li X Y, Xiao X, Li Z Y, Yu Y D, Yu J Z 2013 Chin. Phys. B 22 114212

    [11]

    Hirota Y, Hattori R 2006 Opt. Express 14 4486

    [12]

    Bosch T, Lescure M 1997 IEEE Trans. Instrum. Meas. 46 1224

    [13]

    Guo D M, Wang M 2007 Appl. Opt. 46 1486

    [14]

    Qin J X, Xi L X, Zhang X G, Tian F 2011 Chin. Phys. B 20 114201

    [15]

    Lo Y, Hsu P 2002 Opt. Eng. 41 2764

    [16]

    Poujouly S, Journet B 2002 J. Opt. A: Pure Appl. Opt. 4 s356

    [17]

    Yoon H, Hong J, Huisung K, Kyihwan P 2008 International Conference on Control, Automation and Systems Seoul, Korea, October 14-17, 2008 p2280

    [18]

    Yu D Y, Tan H Y 2005 The Optical Engineering (Beijing: Machinery Industry Press) p306 (in Chinese) [郁道银, 谈恒英 2005 工程光学 (北京: 机械工业出版社) 第306页]

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1675
  • PDF下载量:  551
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-01
  • 修回日期:  2014-03-11
  • 刊出日期:  2014-05-05

基于二次偏振调制的变频测距方法与系统实现

  • 1. 天津大学电子信息工程学院, 天津 300072
    基金项目: 

    国家重点基础研究发展计划(批准号:2012CB315704)和高等学校博士学科点专项科研基金(批准号:20120032120029,20120032130010)资助的课题.

摘要: 由于鉴相精度限制、电路等引入的附加相移干扰等因素,传统相位测距技术精度的提高受到了限制. 采用二次偏振调制技术对相位测距技术进行了改进. 利用二次偏振调制方法能够直接在相位调制器上对两次调制信号的相位差进行解调,大幅度简化了系统的复杂程度. 采用变频方法替代传统的鉴相方法,从而系统的测量精度不再受鉴相问题的困扰. 从理论上得到系统输出光强与调制频率成正余弦关系,并进行了实验验证. 基于变频测距的实验中,系统频率的稳定度优于10-6,测量精度可以达到±10.6 μm(被测距离为4.5 m). 并对一段长200 m的光纤进行了实际测量,得到了清晰的调制频率与系统输出光强的曲线.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回