搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于十字镂空结构的低频超材料吸波体的设计与制备

周卓辉 刘晓来 黄大庆 康飞宇

引用本文:
Citation:

一种基于十字镂空结构的低频超材料吸波体的设计与制备

周卓辉, 刘晓来, 黄大庆, 康飞宇

Design and preparation of a low frequency absorber based on hollowed-out cross-shaped meta-material structure

Zhou Zhuo-Hui, Liu Xiao-Lai, Huang Da-Qing, Kang Fei-Yu
PDF
导出引用
  • 设计了一种十字镂空的超材料结构,与传统的铁磁吸波材料相结合,实现了低频吸收频带的扩宽. 仿真结果显示,吸波体在2-4 GHz范围可以实现-10 dB以下的吸收,相比于没有加载超材料的情况,吸收带宽扩展了0.5 GHz. 实验结果在2.5-5.1 GHz范围内也显示了相似的吸收曲线,低于-9 dB的吸收频带有0.48 GHz的扩宽,扩展了23%. 不同结构的能量损耗密度分布表明,相比于无镂空的十字结构,镂空十字结构可以增加磁场能量损耗,加强单元结构之间的耦合,降低超材料对传统吸波材料性能的破坏. 探索了传统铁磁吸波材料厚度的变化对吸波体吸收性能的影响,发现由超材料引入的附加峰位置不随着吸波材料厚度的改变而明显地移动. 根据这个结果,进一步设计了由两种超材料叠加组合而成的吸波体,仿真结果和实验结果均显示,在降低了1.1 mm铁磁吸波材料层厚度的情况下,使低频吸收带宽又扩展了0.9 GHz.
    A hollowed-out cross-shaped meta-material structure is designed and fabricated in this work. A kind of conventional magnetic material which works at low frequency is used as the absorber substrate. The simulation results demonstrate that an absorber can reach an absorption of less than -10 dB in a range between 2 GHz and 4 GHz, and the absorption band is expanded by a 0.5 GHz when the meta-material structure is unloaded. The experimental results indicate that a similar absorption band appears between 2.5 GHz and 5.1 GHz, which is 0.48 GHz wider than meta-material structure and the absorption band is expanded by 23% when the depth of absorption band below -9 dB. Compared with the cross meta-material, the hollowed-out structure has ability to increase the magnetic energy loss and strengthen the coupling between the units. The influence of magnetic layer thickness on absorption capability of wave absorber is analyzed. The result indicates that the position of addition absorption band does not apparently move with variation in thickness of the magnetic material layer. Based on these results, two different meta-material structures are combined to obtain a wider absorber. The simulation result and the experimental result both show another 0.9 GHz expansion of the absorption band and it can also reduce the thickness of the magnetic layer.
    • 基金项目: 国防预研基金(批准号:9140A10030110HK5105)资助的课题.
    • Funds: Project supported by the National Defense Pre-Research Foundation of China (Grant No. 9140A10030110HK5105).
    [1]

    Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M 2013 J. Appl. Phys. 113 013903

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Pendry J B, Pendry A J, Stewart W J 1996 Phys. Rev. Lett. 76 4758

    [4]

    Pendry J B, Holden A J, Robbins D J 1998 J. Phys. Condens. Matter. 10 4785

    [5]

    Shelby R, Smith D R, Schultz S 2001 Science 292 77

    [6]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6078(in Chinese)[张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6078]

    [7]

    Sun L K, Cheng H F, Zhou Y J, Wang J, Pang Y Q 2011 Acta Phys. Sin. 60 108901(in Chinese)[孙良奎, 程海峰, 周永江, 王军, 庞永强 2011 物理学报 60 108901]

    [8]

    Baena J D, Marques R, Medina F, Martel J 2004 Phys. Rev. B 69 014402

    [9]

    Wakatsuchi H, Paul J, Greedy S, Christopoulos C 2012 IEEE. Trans. Antennas Propag. 60 3670

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [12]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [13]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [14]

    Lin B Q, Da X Y, Zhao S H, Meng W, Li F, Fang Y W, Wang J F 2014 Chin. Phys. B 23 067801

    [15]

    Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Prog. Electromagnet. Res. 108 37

    [16]

    Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 034204

    [17]

    Sun J B, Liu L Y, Dong G Y, Zhou J 2011 Opt. Express 19 21155

    [18]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

  • [1]

    Zhang H B, Deng L W, Zhou P H, Zhang L, Cheng D M 2013 J. Appl. Phys. 113 013903

    [2]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [3]

    Pendry J B, Pendry A J, Stewart W J 1996 Phys. Rev. Lett. 76 4758

    [4]

    Pendry J B, Holden A J, Robbins D J 1998 J. Phys. Condens. Matter. 10 4785

    [5]

    Shelby R, Smith D R, Schultz S 2001 Science 292 77

    [6]

    Zhang Y P, Zhao X P, Bao S, Luo C R 2010 Acta Phys. Sin. 59 6078(in Chinese)[张燕萍, 赵晓鹏, 保石, 罗春荣 2010 物理学报 59 6078]

    [7]

    Sun L K, Cheng H F, Zhou Y J, Wang J, Pang Y Q 2011 Acta Phys. Sin. 60 108901(in Chinese)[孙良奎, 程海峰, 周永江, 王军, 庞永强 2011 物理学报 60 108901]

    [8]

    Baena J D, Marques R, Medina F, Martel J 2004 Phys. Rev. B 69 014402

    [9]

    Wakatsuchi H, Paul J, Greedy S, Christopoulos C 2012 IEEE. Trans. Antennas Propag. 60 3670

    [10]

    Liu X L, Starr T, Starr A F, Padilla W J 2010 Phys. Rev. Lett. 104 207403

    [11]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [12]

    Tao H, Bingham C M, Pilon D, Fan K, Strikwerda A C, Shrekenhamer D, Padilla W J, Zhang X, Averitt R D 2010 J. Phys. D: Appl. Phys. 43 225102

    [13]

    Fan Y N, Cheng Y Z, Nie Y, Wang X, Gong R Z 2013 Chin. Phys. B 22 067801

    [14]

    Lin B Q, Da X Y, Zhao S H, Meng W, Li F, Fang Y W, Wang J F 2014 Chin. Phys. B 23 067801

    [15]

    Li M H, Yang H L, Hou X W, Tian Y, Hou D Y 2010 Prog. Electromagnet. Res. 108 37

    [16]

    Luo H, Wang T, Gong R Z, Nie Y, Wang X 2011 Chin. Phys. Lett. 28 034204

    [17]

    Sun J B, Liu L Y, Dong G Y, Zhou J 2011 Opt. Express 19 21155

    [18]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

计量
  • 文章访问数:  5477
  • PDF下载量:  509
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-08
  • 修回日期:  2014-05-10
  • 刊出日期:  2014-09-05

/

返回文章
返回