搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdTe量子点-铜酞菁复合体系荧光共振能量转移的研究

何志聪 李芳 李牧野 魏来

CdTe量子点-铜酞菁复合体系荧光共振能量转移的研究

何志聪, 李芳, 李牧野, 魏来
PDF
导出引用
  • 以波长为780 nm、重复频率为76 MHz、脉宽为130 fs的飞秒激光作为激发光源, 采用超快时间分辨光谱技术研究了CdTe量子点-铜酞菁复合体系的荧光共振能量转移. 实验结果表明, 在780 nm的双光子激发条件下, 复合体系中CdTe量子点的荧光寿命随着铜酞菁溶液浓度的增加而减少, 荧光共振能量转移效率增加. 同时也研究了激发功率对荧光共振能量转移效率的影响. 结果表明, 随着激发光功率的增加, 复合体系溶液中CdTe量子点的荧光寿命增加, 荧光共振能量转移效率减小, 其物理机理是因为高激发功率下的热效应和由双光子诱导的高阶激发态的跃迁. 当激发光功率为200 mW时, 双光子荧光共振能量转移效率为43.8%. 研究表明CdTe量子点-铜酞菁复合体系是非常有潜力的第三代光敏剂.
    • 基金项目: 国家自然科学基金(批准号: 11204222)、 湖北省自然科学基金(批准号: 2014CFB793, 2013CFB316)、 武汉工程大学科学研究基金和武汉工程大学研究生教育创新基金(批准号: CX2013002) 资助的课题.
    [1]

    Wang J, Long Y T, Zhang Y L, Zhong X H, Zhu L Y 2009 Chem. Phys. Chem. 10 680

    [2]

    Cao C, Wang C, Zhang R 2012 Chin. Phys. B 21 110305

    [3]

    Hong W P, Park S H 2011 Chin. Phys. B 20 098502

    [4]

    An L M, Yang Y Q, Song W S, Su W H, Zeng Q H, Chao K F, Kong X G 2009 Acta Phys. Sin. 58 7914 (in Chinese) [安利民, 杨延强, 宋维斯, 苏文辉, 曾庆辉, 朝克夫, 孔祥贵 2009 物理学报 58 7914]

    [5]

    Nie W J 1993 Adv. Mater. 5 520

    [6]

    Wang K X, Pang F F, Wang T Y 2007 Chin. J. Lasers 34 398 (in Chinese) [王克新, 庞拂飞, 王廷云 2007 中国激光 34 398]

    [7]

    Chestnoy N, Harris T D, Hull R, Brus L E 1986 Phys. Chem. 90 3393

    [8]

    Jain R K, Lind R C 1983 Opt. Soc. Am. 73 647

    [9]

    Arunkumar P, Mark G 2013 Nanoscience 1 208

    [10]

    Gan F X 1991 Non-Cryst. Solids 129 299

    [11]

    Liu Y M, Yu Z Y, Ren X M 2009 Chin. Phys. B 18 9

    [12]

    Deng Z T, Cao L, Tang F Q, Zou B S 2005 Phys. Chem. B 109 16671

    [13]

    Gao M Y, Kirstein S, Wald H M 1998 Phys. Chem. B 102 8360

    [14]

    Chen Q D, Ma Q, Wan Y, Su X G, Lin Z B, Jin Q H 2005 Luminescence 20 251

    [15]

    Allison M D, Bao G 2008 Nano Lett. 8 1439

    [16]

    Ji Z, Xiang Y, Yasukiyo U 2004 Prog. Org. Coat. 49 180

    [17]

    Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Huang J Z, Song D D, Zhu H N, Huang J Y, Xu X R 2008 Acta Phys. Sin. 57 5911 (in Chinese) [袁广才, 徐征, 赵谡玲, 张福俊, 姜薇薇, 黄金昭, 宋丹丹, 朱海娜, 黄金英, 徐叙瑢 2008 物理学报 57 5911]

    [18]

    Ye W G, Liu D, Peng X F, Dou W D 2013 Chin. Phys. B 22 117301

    [19]

    Guo R D, Yue S Z, Wang P, Chen Y, Zhao Y, Liu S Y 2013 Chin. Phys. B 22 127304

    [20]

    Qiao S Z, Kang S S, Qin Y F, Li Q, Zhong H, Kang Y, Yu S Y, Han G B, Yan S S, Mei L M 2014 Chin. Phys. B 23 058501

    [21]

    Hasi W L J, Geng X Z, Jin C Y, Fan R Q, Lin D Y, He W M, L Z W 2011 Acta Phys. Sin. 60 104212 (in Chinese) [哈斯乌力吉, 耿西钊, 靳朝颖, 范瑞清, 林殿阳, 何伟明, 吕志伟 2011 物理学报 60 104212]

    [22]

    Liu D J, Duan Q, Wang F, Wang L J 2005 Chin. J. Laser 32 969 (in Chinese) [刘大军, 段潜, 王舫, 王立杰 2005 中国激光 32 969]

    [23]

    Perry J W, Mansour K, Marder S R, Perry K J, Alvarez D, Choong I 1994 Opt. Lett. 19 625

    [24]

    Samia A C, Chen X, Burda C 2003 J. Am. Chem. Soc. 125 15736

    [25]

    Shi L X, Hernandez B, Selke M 2006 J. Am. Chem. Soc. 128 6278

    [26]

    Hsieh J M, Ho M L, Wu P W, Chou P T, Tsai T T, Yun C 2006 Chem. Commun. 6 615

    [27]

    Ma J, Chen J Y, Idowu M, Nyokong T 2008 J. Phys. Chem. B 112 4465

    [28]

    Nyk M, Palewska K, Kepinski L, Wilk K A, Strek W, Samoc M 2010 J. Luminescence 130 2487

    [29]

    Beck T J, Burkanas M, Bagdonas S, Krivickiene Z, Beyer W, Sroka R, Baumgartner R, Rotomskis R 2007 J. Photochem. Potobiol. B: Biology 87 174

    [30]

    Collins H A, Khurana M, Moriyama E H, Mariampillai A, Dahlstedt E, Balaz M, Kuimova M K, Drobizhev M, Yang V X D, Phillips D, Rebane A, Wilson B C, Anderson H L 2008 Nat. Photon. 2 420

    [31]

    Li F, Li X G 2012 Opt. Commun. 285 5217

    [32]

    Li F, Lu P X 2008 Opt. Express 16 14571

  • [1]

    Wang J, Long Y T, Zhang Y L, Zhong X H, Zhu L Y 2009 Chem. Phys. Chem. 10 680

    [2]

    Cao C, Wang C, Zhang R 2012 Chin. Phys. B 21 110305

    [3]

    Hong W P, Park S H 2011 Chin. Phys. B 20 098502

    [4]

    An L M, Yang Y Q, Song W S, Su W H, Zeng Q H, Chao K F, Kong X G 2009 Acta Phys. Sin. 58 7914 (in Chinese) [安利民, 杨延强, 宋维斯, 苏文辉, 曾庆辉, 朝克夫, 孔祥贵 2009 物理学报 58 7914]

    [5]

    Nie W J 1993 Adv. Mater. 5 520

    [6]

    Wang K X, Pang F F, Wang T Y 2007 Chin. J. Lasers 34 398 (in Chinese) [王克新, 庞拂飞, 王廷云 2007 中国激光 34 398]

    [7]

    Chestnoy N, Harris T D, Hull R, Brus L E 1986 Phys. Chem. 90 3393

    [8]

    Jain R K, Lind R C 1983 Opt. Soc. Am. 73 647

    [9]

    Arunkumar P, Mark G 2013 Nanoscience 1 208

    [10]

    Gan F X 1991 Non-Cryst. Solids 129 299

    [11]

    Liu Y M, Yu Z Y, Ren X M 2009 Chin. Phys. B 18 9

    [12]

    Deng Z T, Cao L, Tang F Q, Zou B S 2005 Phys. Chem. B 109 16671

    [13]

    Gao M Y, Kirstein S, Wald H M 1998 Phys. Chem. B 102 8360

    [14]

    Chen Q D, Ma Q, Wan Y, Su X G, Lin Z B, Jin Q H 2005 Luminescence 20 251

    [15]

    Allison M D, Bao G 2008 Nano Lett. 8 1439

    [16]

    Ji Z, Xiang Y, Yasukiyo U 2004 Prog. Org. Coat. 49 180

    [17]

    Yuan G C, Xu Z, Zhao S L, Zhang F J, Jiang W W, Huang J Z, Song D D, Zhu H N, Huang J Y, Xu X R 2008 Acta Phys. Sin. 57 5911 (in Chinese) [袁广才, 徐征, 赵谡玲, 张福俊, 姜薇薇, 黄金昭, 宋丹丹, 朱海娜, 黄金英, 徐叙瑢 2008 物理学报 57 5911]

    [18]

    Ye W G, Liu D, Peng X F, Dou W D 2013 Chin. Phys. B 22 117301

    [19]

    Guo R D, Yue S Z, Wang P, Chen Y, Zhao Y, Liu S Y 2013 Chin. Phys. B 22 127304

    [20]

    Qiao S Z, Kang S S, Qin Y F, Li Q, Zhong H, Kang Y, Yu S Y, Han G B, Yan S S, Mei L M 2014 Chin. Phys. B 23 058501

    [21]

    Hasi W L J, Geng X Z, Jin C Y, Fan R Q, Lin D Y, He W M, L Z W 2011 Acta Phys. Sin. 60 104212 (in Chinese) [哈斯乌力吉, 耿西钊, 靳朝颖, 范瑞清, 林殿阳, 何伟明, 吕志伟 2011 物理学报 60 104212]

    [22]

    Liu D J, Duan Q, Wang F, Wang L J 2005 Chin. J. Laser 32 969 (in Chinese) [刘大军, 段潜, 王舫, 王立杰 2005 中国激光 32 969]

    [23]

    Perry J W, Mansour K, Marder S R, Perry K J, Alvarez D, Choong I 1994 Opt. Lett. 19 625

    [24]

    Samia A C, Chen X, Burda C 2003 J. Am. Chem. Soc. 125 15736

    [25]

    Shi L X, Hernandez B, Selke M 2006 J. Am. Chem. Soc. 128 6278

    [26]

    Hsieh J M, Ho M L, Wu P W, Chou P T, Tsai T T, Yun C 2006 Chem. Commun. 6 615

    [27]

    Ma J, Chen J Y, Idowu M, Nyokong T 2008 J. Phys. Chem. B 112 4465

    [28]

    Nyk M, Palewska K, Kepinski L, Wilk K A, Strek W, Samoc M 2010 J. Luminescence 130 2487

    [29]

    Beck T J, Burkanas M, Bagdonas S, Krivickiene Z, Beyer W, Sroka R, Baumgartner R, Rotomskis R 2007 J. Photochem. Potobiol. B: Biology 87 174

    [30]

    Collins H A, Khurana M, Moriyama E H, Mariampillai A, Dahlstedt E, Balaz M, Kuimova M K, Drobizhev M, Yang V X D, Phillips D, Rebane A, Wilson B C, Anderson H L 2008 Nat. Photon. 2 420

    [31]

    Li F, Li X G 2012 Opt. Commun. 285 5217

    [32]

    Li F, Lu P X 2008 Opt. Express 16 14571

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2007
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-02
  • 修回日期:  2014-10-09
  • 刊出日期:  2015-02-05

CdTe量子点-铜酞菁复合体系荧光共振能量转移的研究

  • 1. 武汉工程大学理学院, 武汉 430073;
  • 2. 华中科技大学物理学院, 武汉 430074
    基金项目: 

    国家自然科学基金(批准号: 11204222)、 湖北省自然科学基金(批准号: 2014CFB793, 2013CFB316)、 武汉工程大学科学研究基金和武汉工程大学研究生教育创新基金(批准号: CX2013002) 资助的课题.

摘要: 以波长为780 nm、重复频率为76 MHz、脉宽为130 fs的飞秒激光作为激发光源, 采用超快时间分辨光谱技术研究了CdTe量子点-铜酞菁复合体系的荧光共振能量转移. 实验结果表明, 在780 nm的双光子激发条件下, 复合体系中CdTe量子点的荧光寿命随着铜酞菁溶液浓度的增加而减少, 荧光共振能量转移效率增加. 同时也研究了激发功率对荧光共振能量转移效率的影响. 结果表明, 随着激发光功率的增加, 复合体系溶液中CdTe量子点的荧光寿命增加, 荧光共振能量转移效率减小, 其物理机理是因为高激发功率下的热效应和由双光子诱导的高阶激发态的跃迁. 当激发光功率为200 mW时, 双光子荧光共振能量转移效率为43.8%. 研究表明CdTe量子点-铜酞菁复合体系是非常有潜力的第三代光敏剂.

English Abstract

参考文献 (32)

目录

    /

    返回文章
    返回