搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算

陈家华 刘恩克 李勇 祁欣 刘国栋 罗鸿志 王文洪 吴光恒

引用本文:
Citation:

Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算

陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒

First-principles investigations on tetragonal distortion, electronic structure, magnetism, and phonon dispersion of Ga2XCr (X = Mn, Fe, Co, Ni, Cu) Heusler alloys

Chen Jia-Hua, Liu En-Ke, Li Yong, Qi Xin, Liu Guo-Dong, Luo Hong-Zhi, Wang Wen-Hong, Wu Guang-Heng
PDF
导出引用
  • 运用基于密度泛函理论的第一性原理的方法, 对Ga2基Heusler合金Ga2XCr (X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱特性进行了系统的研究. 结果表明, 在保持体积不变的四方畸变中, 五种合金的磁矩主要由Cr元素提供; Ga2FeCr, Ga2CoCr和Ga2CuCr保持稳定的立方相, 而在Ga2MnCr和Ga2NiCr 中观察到能量更低的四方相, 且其能量最低点对应的c/a分别位于1.28和1.11处, 而对应的能量差ΔE 分别为-8.26 meV和-6.14 meV. 电子结构显示, Ga2MnCr和Ga2 NiCr的费米能级附近存在尖锐的电子态密度峰, 导致3d电子能级杂化向宽能量范围扩展, 以消除体系的高能量不稳态, 这个过程导致结构转变的发生. 基于适度的畸变度和能量差, 本文认为Ga2MnCr有存在铁磁马氏体相变的可能, 其声学支虚频的出现, 也进一步表明体系有声子模软化的行为.
    In Ga2-based Heusler alloys Ga2XCr (X = Mn, Fe, Co, Ni, Cu) the tetragonal distortion, electronic structure, magnetism and phonon dispersion have been studied by first-principles calculations based on the density functional theory. The volume-conserving tetragonal distortions of the cubic Ga2XCr show that Cr atom makes the greatest contribution to the total magnetic moment. No martensitic transformation has been found in Ga2FeCr, Ga2CoCr and Ga2CuCr. For both Ga2MnCr and Ga2NiCr, the tetragonal phase is lower in energy as compared with the cubic phase. Ga2MnCr and Ga2NiCr have the lowest total energy at c/a = 1.28 and 1.11, respectively. Correspondingly, the energy difference ΔE between the cubic and the tetragonal phase is -8.26 meV in Ga2MnCr and -6.14 meV in Ga2NiCr. For Ga2MnCr and Ga2NiCr, calculations of electronic structure and phonon dispersion reveal that a sharp peak near the Fermi level will lead to a structural instability by increasing the energy of the system, which can result in a broadening in the energy range due to hybridizations between 3d electrons as well as the potential structural transformation. With proper c/a and ΔE a potential tetragonal martensitic transformation can be expected in Ga2MnCr, the phonon dispersion of which further shows that the acoustic modes tend to be softened.
    • 基金项目: 国家自然科学基金(批准号: 51301195, 51275029)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51301195, 51275029).
    [1]

    Wu G H, Yu C H, Meng L Q, Chen J L, Yang F M, Qi S R, Zhan W S, Wang Z, Zheng Y F, Zhao L C 1999 Appl. Phys. Lett. 75 2990

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Hu F X, Shen B G, Sun J R, Wu G H 2001 Phys. Rev. B 64 132412

    [4]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl. Phys. Lett. 89 162503

    [5]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [6]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [7]

    Karaca H E, Karaman I, Basaran B, Ren Y, Chumlyakov Y I, Maier H J 2009 Adv. Funct. Mater. 19 983

    [8]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Mullner P 2009 Nat. Mater. 8 863

    [9]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923

    [10]

    Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S, Acet M 2010 Nat. Mater. 9 478

    [11]

    Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Mag. B 49 295

    [12]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [13]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424

    [14]

    Liu G, Chen J, Liu Z, Dai X, Wu G, Zhang B, Zhang X 2005 Appl. Phys. Lett. 87 262504

    [15]

    Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K 2001 Mater. Trans. 42 2472

    [16]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393

    [17]

    Xu X, Omori T, Nagasako M, Okubo A, Umetsu R Y, Kanomata T, Ishida K, Kainuma R 2013 Appl. Phys. Lett. 103 164104

    [18]

    Jenkins C, Scholl A, Kainuma R, Elmers H J, Omori T 2012 Appl. Phys. Lett. 100 032401

    [19]

    Zhu W, Liu E K, Feng L, Tang X D, Chen J L, Wu G H, Liu Z H, Meng F B, Luo H Z 2009 Appl. Phys. Lett. 95 222512

    [20]

    Shiraishi H, Sugamura M, Hori T 1987 J. Magn. Magn. Mater. 70 230

    [21]

    Shiraishi H, Hori T, Yamaguchi Y 1992 J. Magn. Magn. Mater. 104-107, Part 3 2040

    [22]

    Barman S R, Chakrabarti A, Singh S, Banik S, Bhardwaj S, Paulose P L, Chalke B A, Panda A K, Mitra A, Awasthi A M 2008 Phys. Rev. B 78 134406

    [23]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2009 Z. Kristallogr. 220 567

    [24]

    Niculescu V, Burch T, Raj K, Budnick J 1977 J. Magn. Magn. Mater. 5 60

    [25]

    Zayak A, Entel P, Rabe K, Adeagbo W, Acet M 2005 Phys. Rev. B 72 054113

    [26]

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2010 Acta Phys. Sin. 59 8037 (in Chinese) [罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2010 物理学报 59 8037]

    [27]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 521]

    [28]

    Luo L J, Zhong C G, Fang J H, Zhao Y L, Zhou P X, Jiang X F 2011 Acta Phys. Sin. 60 127502 (in Chinese) [罗礼进, 仲崇贵, 赵永林, 方靖淮, 周朋霞, 江学范 2011 物理学报 60 127502]

    [29]

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2012 Acta Phys. Sin. 61 207503 (in Chinese) [罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2012 物理学报 61 207503]

    [30]

    Luo H Z, Jia P Z, Liu G D, Meng F B, Liu H Y, Liu E K, Wang W H, Wu G H 2013 Solid State Commun. 170 44

    [31]

    Luo H Z, Meng F B, Liu G D, Liu H Y, Jia P Z, Liu E K, Wang W H, Wu G H 2013 Intermetallics 38 139

    [32]

    Li G J, Liu E K, Zhang Y J, Du Y, Zhang H W, Wang W H, Wu G H 2013 J. Appl. Phys. 113 103903

    [33]

    Winterlik J, Chadov S, Gupta A, Alijani V, Gasi T, Filsinger K, Balke B, Fecher G H, Jenkins C A, Casper F, Kubler J, Liu G D, Gao L, Parkin S S, Felser C 2012 Adv. Mater. 24 6283

    [34]

    Sahariah M B, Ghosh S, Singh C S, Gowtham S, Pandey R 2013 J. Phys.: Condes. Matter 25 025502

    [35]

    Felser C, Alijani V, Winterlik J, Chadov S, Nayak A K 2013 IEEE Trans. Magn. 49 682

    [36]

    Sozinov A, Likhachev A A, Lanska N, Ullakko K 2002 Appl. Phys. Lett. 80 1746

    [37]

    Lin W, Xu J H, Freeman A J 1992 Phys. Rev. B 45 10863

    [38]

    S. I. Shinpei Fujii, Setsuro Asano 1989 J. Phys. Soc. Jpn. 58 3657

    [39]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703

    [40]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [41]

    Stuhr U, Vorderwisch P, Kokorin V V 2000 J. Phys.: Condes. Matter 12 7541

    [42]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [43]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

  • [1]

    Wu G H, Yu C H, Meng L Q, Chen J L, Yang F M, Qi S R, Zhan W S, Wang Z, Zheng Y F, Zhao L C 1999 Appl. Phys. Lett. 75 2990

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Hu F X, Shen B G, Sun J R, Wu G H 2001 Phys. Rev. B 64 132412

    [4]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl. Phys. Lett. 89 162503

    [5]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [6]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [7]

    Karaca H E, Karaman I, Basaran B, Ren Y, Chumlyakov Y I, Maier H J 2009 Adv. Funct. Mater. 19 983

    [8]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Mullner P 2009 Nat. Mater. 8 863

    [9]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923

    [10]

    Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S, Acet M 2010 Nat. Mater. 9 478

    [11]

    Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Mag. B 49 295

    [12]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [13]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424

    [14]

    Liu G, Chen J, Liu Z, Dai X, Wu G, Zhang B, Zhang X 2005 Appl. Phys. Lett. 87 262504

    [15]

    Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K 2001 Mater. Trans. 42 2472

    [16]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393

    [17]

    Xu X, Omori T, Nagasako M, Okubo A, Umetsu R Y, Kanomata T, Ishida K, Kainuma R 2013 Appl. Phys. Lett. 103 164104

    [18]

    Jenkins C, Scholl A, Kainuma R, Elmers H J, Omori T 2012 Appl. Phys. Lett. 100 032401

    [19]

    Zhu W, Liu E K, Feng L, Tang X D, Chen J L, Wu G H, Liu Z H, Meng F B, Luo H Z 2009 Appl. Phys. Lett. 95 222512

    [20]

    Shiraishi H, Sugamura M, Hori T 1987 J. Magn. Magn. Mater. 70 230

    [21]

    Shiraishi H, Hori T, Yamaguchi Y 1992 J. Magn. Magn. Mater. 104-107, Part 3 2040

    [22]

    Barman S R, Chakrabarti A, Singh S, Banik S, Bhardwaj S, Paulose P L, Chalke B A, Panda A K, Mitra A, Awasthi A M 2008 Phys. Rev. B 78 134406

    [23]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2009 Z. Kristallogr. 220 567

    [24]

    Niculescu V, Burch T, Raj K, Budnick J 1977 J. Magn. Magn. Mater. 5 60

    [25]

    Zayak A, Entel P, Rabe K, Adeagbo W, Acet M 2005 Phys. Rev. B 72 054113

    [26]

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2010 Acta Phys. Sin. 59 8037 (in Chinese) [罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2010 物理学报 59 8037]

    [27]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 521]

    [28]

    Luo L J, Zhong C G, Fang J H, Zhao Y L, Zhou P X, Jiang X F 2011 Acta Phys. Sin. 60 127502 (in Chinese) [罗礼进, 仲崇贵, 赵永林, 方靖淮, 周朋霞, 江学范 2011 物理学报 60 127502]

    [29]

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2012 Acta Phys. Sin. 61 207503 (in Chinese) [罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2012 物理学报 61 207503]

    [30]

    Luo H Z, Jia P Z, Liu G D, Meng F B, Liu H Y, Liu E K, Wang W H, Wu G H 2013 Solid State Commun. 170 44

    [31]

    Luo H Z, Meng F B, Liu G D, Liu H Y, Jia P Z, Liu E K, Wang W H, Wu G H 2013 Intermetallics 38 139

    [32]

    Li G J, Liu E K, Zhang Y J, Du Y, Zhang H W, Wang W H, Wu G H 2013 J. Appl. Phys. 113 103903

    [33]

    Winterlik J, Chadov S, Gupta A, Alijani V, Gasi T, Filsinger K, Balke B, Fecher G H, Jenkins C A, Casper F, Kubler J, Liu G D, Gao L, Parkin S S, Felser C 2012 Adv. Mater. 24 6283

    [34]

    Sahariah M B, Ghosh S, Singh C S, Gowtham S, Pandey R 2013 J. Phys.: Condes. Matter 25 025502

    [35]

    Felser C, Alijani V, Winterlik J, Chadov S, Nayak A K 2013 IEEE Trans. Magn. 49 682

    [36]

    Sozinov A, Likhachev A A, Lanska N, Ullakko K 2002 Appl. Phys. Lett. 80 1746

    [37]

    Lin W, Xu J H, Freeman A J 1992 Phys. Rev. B 45 10863

    [38]

    S. I. Shinpei Fujii, Setsuro Asano 1989 J. Phys. Soc. Jpn. 58 3657

    [39]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703

    [40]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [41]

    Stuhr U, Vorderwisch P, Kokorin V V 2000 J. Phys.: Condes. Matter 12 7541

    [42]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [43]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 杨顺杰, 李春梅, 周金萍. 磁无序及合金化效应影响Co2CrZ (Z = Ga, Si, Ge)合金相稳定性和弹性常数的第一性原理研究. 物理学报, 2022, 71(10): 106201. doi: 10.7498/aps.71.20212254
    [3] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211631
    [4] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志. Zn掺杂对Heusler型磁性形状记忆合金Ni2FeGa1–xZnx (x = 0—1)电子结构、磁性与马氏体相变影响的第一性原理研究. 物理学报, 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [5] Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应. 物理学报, 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [6] 王艳, 曹仟慧, 胡翠娥, 曾召益. Ce-La-Th合金高压相变的第一性原理计算. 物理学报, 2019, 68(8): 086401. doi: 10.7498/aps.68.20182128
    [7] 罗明海, 黎明锴, 朱家昆, 黄忠兵, 杨辉, 何云斌. CdxZn1-xO合金热力学性质的第一性原理研究. 物理学报, 2016, 65(15): 157303. doi: 10.7498/aps.65.157303
    [8] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [9] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [10] 王啸天, 代学芳, 贾红英, 王立英, 刘然, 李勇, 刘笑闯, 张小明, 王文洪, 吴光恒, 刘国栋. Heusler型X2RuPb (X=Lu, Y)合金的反带结构和拓扑绝缘性. 物理学报, 2014, 63(2): 023101. doi: 10.7498/aps.63.023101
    [11] 张玉洁, 李贵江, 刘恩克, 陈京兰, 王文洪, 吴光恒, 胡俊雄. 亚铁磁Heusler合金Mn2CoGa和Mn2CoAl掺杂Cr, Fe和Co的局域铁磁结构. 物理学报, 2013, 62(3): 037501. doi: 10.7498/aps.62.037501
    [12] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置. 物理学报, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [13] 杜音, 王文洪, 张小明, 刘恩克, 吴光恒. 铁基Heusler合金Fe2Co1-xCrxSi的结构、磁性和输运性质的研究. 物理学报, 2012, 61(14): 147304. doi: 10.7498/aps.61.147304
    [14] 赵建涛, 赵昆, 王家佳, 余新泉, 于金, 吴三械. Heusler合金Mn2NiGa的第一性原理研究. 物理学报, 2012, 61(21): 213102. doi: 10.7498/aps.61.213102
    [15] 赵晶晶, 舒迪, 祁欣, 刘恩克, 朱伟, 冯琳, 王文洪, 吴光恒. Co50Fe50-xSix合金的结构相变和磁性. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.1
    [16] 刘新浩, 林景波, 刘艳辉, 金迎九. Full-Heusler合金X2YGa(X=Co,Fe,Ni;Y=V,Cr,Mn)的电子结构、磁性及半金属特性的第一性原理研究. 物理学报, 2011, 60(10): 107104. doi: 10.7498/aps.60.107104
    [17] 赵昆, 张坤, 王家佳, 于金, 吴三械. Heusler合金Pd2 CrAl四方变形、磁性及弹性常数的第一性原理计算. 物理学报, 2011, 60(12): 127101. doi: 10.7498/aps.60.127101
    [18] 刘国栋, 王新强, 代学芳, 柳祝红, 于淑云, 陈京兰, 吴光恒. Si掺杂的铁磁形状记忆合金Co50Ni21Ga29Six的物性研究. 物理学报, 2007, 56(3): 1686-1690. doi: 10.7498/aps.56.1686
    [19] 代学芳, 刘何燕, 闫丽琴, 曲静萍, 李养贤, 陈京兰, 吴光恒. CoNiZ系列合金的结构和马氏体相变性质. 物理学报, 2006, 55(5): 2534-2538. doi: 10.7498/aps.55.2534
    [20] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
计量
  • 文章访问数:  5595
  • PDF下载量:  788
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-03
  • 修回日期:  2014-11-03
  • 刊出日期:  2015-04-05

/

返回文章
返回