搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算

陈家华 刘恩克 李勇 祁欣 刘国栋 罗鸿志 王文洪 吴光恒

Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算

陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒
PDF
导出引用
  • 运用基于密度泛函理论的第一性原理的方法, 对Ga2基Heusler合金Ga2XCr (X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱特性进行了系统的研究. 结果表明, 在保持体积不变的四方畸变中, 五种合金的磁矩主要由Cr元素提供; Ga2FeCr, Ga2CoCr和Ga2CuCr保持稳定的立方相, 而在Ga2MnCr和Ga2NiCr 中观察到能量更低的四方相, 且其能量最低点对应的c/a分别位于1.28和1.11处, 而对应的能量差ΔE 分别为-8.26 meV和-6.14 meV. 电子结构显示, Ga2MnCr和Ga2 NiCr的费米能级附近存在尖锐的电子态密度峰, 导致3d电子能级杂化向宽能量范围扩展, 以消除体系的高能量不稳态, 这个过程导致结构转变的发生. 基于适度的畸变度和能量差, 本文认为Ga2MnCr有存在铁磁马氏体相变的可能, 其声学支虚频的出现, 也进一步表明体系有声子模软化的行为.
    • 基金项目: 国家自然科学基金(批准号: 51301195, 51275029)资助的课题.
    [1]

    Wu G H, Yu C H, Meng L Q, Chen J L, Yang F M, Qi S R, Zhan W S, Wang Z, Zheng Y F, Zhao L C 1999 Appl. Phys. Lett. 75 2990

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Hu F X, Shen B G, Sun J R, Wu G H 2001 Phys. Rev. B 64 132412

    [4]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl. Phys. Lett. 89 162503

    [5]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [6]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [7]

    Karaca H E, Karaman I, Basaran B, Ren Y, Chumlyakov Y I, Maier H J 2009 Adv. Funct. Mater. 19 983

    [8]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Mullner P 2009 Nat. Mater. 8 863

    [9]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923

    [10]

    Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S, Acet M 2010 Nat. Mater. 9 478

    [11]

    Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Mag. B 49 295

    [12]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [13]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424

    [14]

    Liu G, Chen J, Liu Z, Dai X, Wu G, Zhang B, Zhang X 2005 Appl. Phys. Lett. 87 262504

    [15]

    Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K 2001 Mater. Trans. 42 2472

    [16]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393

    [17]

    Xu X, Omori T, Nagasako M, Okubo A, Umetsu R Y, Kanomata T, Ishida K, Kainuma R 2013 Appl. Phys. Lett. 103 164104

    [18]

    Jenkins C, Scholl A, Kainuma R, Elmers H J, Omori T 2012 Appl. Phys. Lett. 100 032401

    [19]

    Zhu W, Liu E K, Feng L, Tang X D, Chen J L, Wu G H, Liu Z H, Meng F B, Luo H Z 2009 Appl. Phys. Lett. 95 222512

    [20]

    Shiraishi H, Sugamura M, Hori T 1987 J. Magn. Magn. Mater. 70 230

    [21]

    Shiraishi H, Hori T, Yamaguchi Y 1992 J. Magn. Magn. Mater. 104-107, Part 3 2040

    [22]

    Barman S R, Chakrabarti A, Singh S, Banik S, Bhardwaj S, Paulose P L, Chalke B A, Panda A K, Mitra A, Awasthi A M 2008 Phys. Rev. B 78 134406

    [23]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2009 Z. Kristallogr. 220 567

    [24]

    Niculescu V, Burch T, Raj K, Budnick J 1977 J. Magn. Magn. Mater. 5 60

    [25]

    Zayak A, Entel P, Rabe K, Adeagbo W, Acet M 2005 Phys. Rev. B 72 054113

    [26]

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2010 Acta Phys. Sin. 59 8037 (in Chinese) [罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2010 物理学报 59 8037]

    [27]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 521]

    [28]

    Luo L J, Zhong C G, Fang J H, Zhao Y L, Zhou P X, Jiang X F 2011 Acta Phys. Sin. 60 127502 (in Chinese) [罗礼进, 仲崇贵, 赵永林, 方靖淮, 周朋霞, 江学范 2011 物理学报 60 127502]

    [29]

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2012 Acta Phys. Sin. 61 207503 (in Chinese) [罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2012 物理学报 61 207503]

    [30]

    Luo H Z, Jia P Z, Liu G D, Meng F B, Liu H Y, Liu E K, Wang W H, Wu G H 2013 Solid State Commun. 170 44

    [31]

    Luo H Z, Meng F B, Liu G D, Liu H Y, Jia P Z, Liu E K, Wang W H, Wu G H 2013 Intermetallics 38 139

    [32]

    Li G J, Liu E K, Zhang Y J, Du Y, Zhang H W, Wang W H, Wu G H 2013 J. Appl. Phys. 113 103903

    [33]

    Winterlik J, Chadov S, Gupta A, Alijani V, Gasi T, Filsinger K, Balke B, Fecher G H, Jenkins C A, Casper F, Kubler J, Liu G D, Gao L, Parkin S S, Felser C 2012 Adv. Mater. 24 6283

    [34]

    Sahariah M B, Ghosh S, Singh C S, Gowtham S, Pandey R 2013 J. Phys.: Condes. Matter 25 025502

    [35]

    Felser C, Alijani V, Winterlik J, Chadov S, Nayak A K 2013 IEEE Trans. Magn. 49 682

    [36]

    Sozinov A, Likhachev A A, Lanska N, Ullakko K 2002 Appl. Phys. Lett. 80 1746

    [37]

    Lin W, Xu J H, Freeman A J 1992 Phys. Rev. B 45 10863

    [38]

    S. I. Shinpei Fujii, Setsuro Asano 1989 J. Phys. Soc. Jpn. 58 3657

    [39]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703

    [40]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [41]

    Stuhr U, Vorderwisch P, Kokorin V V 2000 J. Phys.: Condes. Matter 12 7541

    [42]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [43]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

  • [1]

    Wu G H, Yu C H, Meng L Q, Chen J L, Yang F M, Qi S R, Zhan W S, Wang Z, Zheng Y F, Zhao L C 1999 Appl. Phys. Lett. 75 2990

    [2]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 Nature 439 957

    [3]

    Hu F X, Shen B G, Sun J R, Wu G H 2001 Phys. Rev. B 64 132412

    [4]

    Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2006 Appl. Phys. Lett. 89 162503

    [5]

    Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 Phys. Rev. B 80 092408

    [6]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [7]

    Karaca H E, Karaman I, Basaran B, Ren Y, Chumlyakov Y I, Maier H J 2009 Adv. Funct. Mater. 19 983

    [8]

    Chmielus M, Zhang X X, Witherspoon C, Dunand D C, Mullner P 2009 Nat. Mater. 8 863

    [9]

    Sarawate N, Dapino M 2006 Appl. Phys. Lett. 88 121923

    [10]

    Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S, Acet M 2010 Nat. Mater. 9 478

    [11]

    Webster P J, Ziebeck K R A, Town S L, Peak M S 1984 Philos. Mag. B 49 295

    [12]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [13]

    Liu Z H, Zhang M, Cui Y T, Zhou Y Q, Wang W H, Wu G H, Zhang X X, Xiao G 2003 Appl. Phys. Lett. 82 424

    [14]

    Liu G, Chen J, Liu Z, Dai X, Wu G, Zhang B, Zhang X 2005 Appl. Phys. Lett. 87 262504

    [15]

    Oikawa K, Ota T, Gejima F, Ohmori T, Kainuma R, Ishida K 2001 Mater. Trans. 42 2472

    [16]

    Wuttig M, Li J, Craciunescu C 2001 Scr. Mater. 44 2393

    [17]

    Xu X, Omori T, Nagasako M, Okubo A, Umetsu R Y, Kanomata T, Ishida K, Kainuma R 2013 Appl. Phys. Lett. 103 164104

    [18]

    Jenkins C, Scholl A, Kainuma R, Elmers H J, Omori T 2012 Appl. Phys. Lett. 100 032401

    [19]

    Zhu W, Liu E K, Feng L, Tang X D, Chen J L, Wu G H, Liu Z H, Meng F B, Luo H Z 2009 Appl. Phys. Lett. 95 222512

    [20]

    Shiraishi H, Sugamura M, Hori T 1987 J. Magn. Magn. Mater. 70 230

    [21]

    Shiraishi H, Hori T, Yamaguchi Y 1992 J. Magn. Magn. Mater. 104-107, Part 3 2040

    [22]

    Barman S R, Chakrabarti A, Singh S, Banik S, Bhardwaj S, Paulose P L, Chalke B A, Panda A K, Mitra A, Awasthi A M 2008 Phys. Rev. B 78 134406

    [23]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K, Payne M C 2009 Z. Kristallogr. 220 567

    [24]

    Niculescu V, Burch T, Raj K, Budnick J 1977 J. Magn. Magn. Mater. 5 60

    [25]

    Zayak A, Entel P, Rabe K, Adeagbo W, Acet M 2005 Phys. Rev. B 72 054113

    [26]

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2010 Acta Phys. Sin. 59 8037 (in Chinese) [罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2010 物理学报 59 8037]

    [27]

    Luo L J, Zhong C G, Jiang X F, Fang J H, Jiang Q 2010 Acta Phys. Sin. 59 521 (in Chinese) [罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青 2010 物理学报 59 521]

    [28]

    Luo L J, Zhong C G, Fang J H, Zhao Y L, Zhou P X, Jiang X F 2011 Acta Phys. Sin. 60 127502 (in Chinese) [罗礼进, 仲崇贵, 赵永林, 方靖淮, 周朋霞, 江学范 2011 物理学报 60 127502]

    [29]

    Luo L J, Zhong C G, Dong Z C, Fang J H, Zhou P X, Jiang X F 2012 Acta Phys. Sin. 61 207503 (in Chinese) [罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范 2012 物理学报 61 207503]

    [30]

    Luo H Z, Jia P Z, Liu G D, Meng F B, Liu H Y, Liu E K, Wang W H, Wu G H 2013 Solid State Commun. 170 44

    [31]

    Luo H Z, Meng F B, Liu G D, Liu H Y, Jia P Z, Liu E K, Wang W H, Wu G H 2013 Intermetallics 38 139

    [32]

    Li G J, Liu E K, Zhang Y J, Du Y, Zhang H W, Wang W H, Wu G H 2013 J. Appl. Phys. 113 103903

    [33]

    Winterlik J, Chadov S, Gupta A, Alijani V, Gasi T, Filsinger K, Balke B, Fecher G H, Jenkins C A, Casper F, Kubler J, Liu G D, Gao L, Parkin S S, Felser C 2012 Adv. Mater. 24 6283

    [34]

    Sahariah M B, Ghosh S, Singh C S, Gowtham S, Pandey R 2013 J. Phys.: Condes. Matter 25 025502

    [35]

    Felser C, Alijani V, Winterlik J, Chadov S, Nayak A K 2013 IEEE Trans. Magn. 49 682

    [36]

    Sozinov A, Likhachev A A, Lanska N, Ullakko K 2002 Appl. Phys. Lett. 80 1746

    [37]

    Lin W, Xu J H, Freeman A J 1992 Phys. Rev. B 45 10863

    [38]

    S. I. Shinpei Fujii, Setsuro Asano 1989 J. Phys. Soc. Jpn. 58 3657

    [39]

    Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, Lashley J C 2008 Phys. Rev. Lett. 100 165703

    [40]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [41]

    Stuhr U, Vorderwisch P, Kokorin V V 2000 J. Phys.: Condes. Matter 12 7541

    [42]

    Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903

    [43]

    Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2287
  • PDF下载量:  758
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-03
  • 修回日期:  2014-11-03
  • 刊出日期:  2015-04-05

Ga2基Heusler合金Ga2XCr(X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱的第一性原理计算

  • 1. 北京化工大学理学院, 北京 100029;
  • 2. 中国科学院物理研究所磁学国家重点实验室, 北京 100190;
  • 3. 河北工业大学材料学院, 天津 300130
    基金项目: 

    国家自然科学基金(批准号: 51301195, 51275029)资助的课题.

摘要: 运用基于密度泛函理论的第一性原理的方法, 对Ga2基Heusler合金Ga2XCr (X = Mn, Fe, Co, Ni, Cu)的四方畸变、电子结构、磁性及声子谱特性进行了系统的研究. 结果表明, 在保持体积不变的四方畸变中, 五种合金的磁矩主要由Cr元素提供; Ga2FeCr, Ga2CoCr和Ga2CuCr保持稳定的立方相, 而在Ga2MnCr和Ga2NiCr 中观察到能量更低的四方相, 且其能量最低点对应的c/a分别位于1.28和1.11处, 而对应的能量差ΔE 分别为-8.26 meV和-6.14 meV. 电子结构显示, Ga2MnCr和Ga2 NiCr的费米能级附近存在尖锐的电子态密度峰, 导致3d电子能级杂化向宽能量范围扩展, 以消除体系的高能量不稳态, 这个过程导致结构转变的发生. 基于适度的畸变度和能量差, 本文认为Ga2MnCr有存在铁磁马氏体相变的可能, 其声学支虚频的出现, 也进一步表明体系有声子模软化的行为.

English Abstract

参考文献 (43)

目录

    /

    返回文章
    返回