搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改善Si3N4俘获层过擦现象的第一性原理研究

代月花 金波 汪家余 陈真 李宁 蒋先伟 卢文娟 李晓风

引用本文:
Citation:

改善Si3N4俘获层过擦现象的第一性原理研究

代月花, 金波, 汪家余, 陈真, 李宁, 蒋先伟, 卢文娟, 李晓风

First-principles study on the minimization of over-erase phenomenon in Si3N4 trapping layer

Dai Yue-Hua, Jin Bo, Wang Jia-Yu, Chen Zhen, Li Ning, Jiang Xian-Wei, Lu Wen-Juan, Li Xiao-Feng
PDF
导出引用
  • 采用第一性原理方法对如何改善电荷俘获存储器的过擦现象进行了研究. 过擦是由于氮空位中Si原子对电荷的局域能力弱导致, 因此, 在Si3N4超胞中分别建立了以C, N, O替换氮空位中的Si原子的缺陷结构作为本文的研究模型. 分别计算了擦写之后体系的巴德电荷分布、相互作用能、态密度, 借以分析替位原子对过擦的影响. 巴德电荷分布的计算结果表明, Si3N4在O替位128号Si后的过擦现象被明显改善; C替位128号Si也可以改善过擦, 但由于C替位对电荷的局域作用变弱, 不利于电荷的存储实现; N替位128号Si则不能改善过擦; 而在162和196号Si位置, 三种原子的替换均无法改善过擦现象. 相互作用能的研究表明, 在128号Si位置, 三种原子都能够和氮空位形成团簇, 在体系中稳定存在. 特别地, O替位Si后, 体系中两缺陷的相互吸引作用最弱, 从而写入的电荷能够短暂的打破O团簇的稳定性, 实现电荷重构, 将电荷局域在O团簇周围. 此外, 态密度的分析结果表明O在128号Si位置能够在Si3N4禁带中引入深能级缺陷, 深能级局域电荷的能力强. 以上分析证明, O替位可以很好的改善Si3N4中的过擦现象. 本文的研究结果为电荷俘获存储器改善过擦提供了一种方法, 对提高器件的电荷保持特性和优化存储窗口具有指导意义.
    The first-principles method has been used to explore how to minimize the over-erase phenomenon in charge trapping memory. Over-erase phenomenon originates from the nitrogen vacancy due to its weak localization of charge on Si atoms. Therefore, we develop a defect model for studying Si3N4 supercells. The defect model consists of an N vacancy and a substitutional atom on the Si site. The substitutional atoms can be C, N, and O atoms, respectively. The Si site belongs to the N vacancy. Then, the Bader charge distribution after program/erase operation, the interaction energy and density of states are calculated for the model so as to analyze the effects of the substitutional atoms on the over-erase phenomenon. The obtained results of the Bader charge distribution show that the substitution of O for the 128th Si can minimize the over-erase phenomenon in Si3N4, and the replacement of the 128th Si by C can also reduce the over-erase phenomenon. However, the model represents a weak localization of charge due to the replacement by C, which is not preferable for charge storage. And the results also reveal that the substitution of N for the 128th Si completely fails to reduce the over-erase phenomenon. With regard to the 162th and 196th Si sites, the substitutions of the three atoms for the two sites cannot minimize the over-erase phenomenon. Furthermore, the analysis of the interaction energies indicates that the combination of each of the three atoms with the N vacancy can form stable clusters on the 128th site in the model. In particular, the attractive interaction between O and N vacancy is the weakest of the three so that the injected charge can temporarily break the stability of the O cluster to rearrange the charge distribution, realizing the localization of charge around the O cluster. And then, the results of the density of states designate that subtitutional O atom at the 128th Si atom site produces a deep-level trap in the band gap, which has a powerful ability to localize the charge. The above results suggest that substitution of O for Si is an excellent solution for the minimization of over-erase phenomenon in Si3N4. This work can provide a method for the minimization of over-erase phenomenon in charge trapping memory and also can be helpful to the improvement of charge retention and optimization of memory window in the charge trapping memory.
    • 基金项目: 国家自然科学基金(批准号:61376106)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376106).
    [1]

    Sandip T, Farhan R, Hussein H, Allan H, Emmanuel F, Kevin C 1996 Appl. Phy. Lett. 68 1377

    [2]

    Kin F K, Chin M L, Ming J C, Ming J T, Tsung S C 2009 Adv. Mater. 21 1695

    [3]

    Lee H Y, Chen P S, Wu T Y, Chen S, Wang C C, Tzeng P J, Tsai M J, Line C 2010 IEEE Electron Dev. Lett. 31 44

    [4]

    Tehrsin S, Chen E, Durlam M, DeHerrera M, Slaughter J M, Shi J, Kerszykowski G 1999 J. Appl. Phys. 85 5822

    [5]

    Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H V 2001 J. Appl. Phys. 89 2791

    [6]

    Gritsenko V A, Novikov Y N, Shaposhnikov A V, Wong H, Zhidomirov G M 2003 Phys. Solid State 45 2031

    [7]

    Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511

    [8]

    Tsai C Y, Chin A 2012 IEEE Trans. Electron Devices 59 252

    [9]

    Jin L 2012 Ph.D. Dissertation (Hefei: Anhui University) (in Chinese) [金林 2012 博士学位论文(合肥: 安徽大学)]

    [10]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai Jie, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [11]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin J K, Lai Y L, Lai H L 2007 IEEE Electron Devices and Solid-State Circuits 629

    [13]

    Wang X G, Liu J, Bai W P, Kong D L 2004 IEEE Trans. Electron Devices 51 597

    [14]

    Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electron Devices 58 3847

    [15]

    Swift C T, Chindalore G L, Harber K, Harp T S, Hoefler A, Hong C M, Ingersoll P A, Li C B, Prinz E J, Yater J A 2002 IEDM Tech. Dig. 927

    [16]

    Rosmeulen M, Sleeckx E, De Meyer K 2002 IEDM Tech. Dig. 189

    [17]

    Ishiduki M, Fukuzumi Y, Katsumata R, Kito M, Kido M, Tanaka H, Komori Y, Nagata Y, Fujiwara T, Maeda Y, Mikajiri Y, Oota S, Honda M, Iwata Y, Kirisawa R, Aochi H, Nitayama A 2009 IEDM Tech. Dig. 625

    [18]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 J. Semicond. 35 014004

    [19]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electron Devices 51 1143

    [20]

    Wang J Y, Dai Y H, Zhao Y Y, Xu J B, Yang F, Dai G Z, Yang J 2014 Acta Phys. Sin. 63 203101 (in Chinese) [汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金 2014 物理学报 63 203101]

    [21]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li X F, Liu M, Dai Y H 2013 J. Semicond. 34 032001

    [22]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.:Condens. Matter 21 084204

    [23]

    Sanville E, Kenny S D, Smith R, Henkelman G 2007 J. Comput. Chem. 28 899

    [24]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [25]

    Deng S H, Jiang Z L 2014 Acta Phys. Sin. 63 077101 (in Chinese) [邓胜华, 姜志林 2014 物理学报 63 077101]

    [26]

    Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301

    [27]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [28]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [29]

    John P P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

  • [1]

    Sandip T, Farhan R, Hussein H, Allan H, Emmanuel F, Kevin C 1996 Appl. Phy. Lett. 68 1377

    [2]

    Kin F K, Chin M L, Ming J C, Ming J T, Tsung S C 2009 Adv. Mater. 21 1695

    [3]

    Lee H Y, Chen P S, Wu T Y, Chen S, Wang C C, Tzeng P J, Tsai M J, Line C 2010 IEEE Electron Dev. Lett. 31 44

    [4]

    Tehrsin S, Chen E, Durlam M, DeHerrera M, Slaughter J M, Shi J, Kerszykowski G 1999 J. Appl. Phys. 85 5822

    [5]

    Bachhofer H, Reisinger H, Bertagnolli E, Philipsborn H V 2001 J. Appl. Phys. 89 2791

    [6]

    Gritsenko V A, Novikov Y N, Shaposhnikov A V, Wong H, Zhidomirov G M 2003 Phys. Solid State 45 2031

    [7]

    Ptersen M, Roizin Y 2006 Appl. Phys. Lett. 89 053511

    [8]

    Tsai C Y, Chin A 2012 IEEE Trans. Electron Devices 59 252

    [9]

    Jin L 2012 Ph.D. Dissertation (Hefei: Anhui University) (in Chinese) [金林 2012 博士学位论文(合肥: 安徽大学)]

    [10]

    Jin L, Zhang M H, Huo Z L, Yu Z A, Jiang D D, Wang Y, Bai Jie, Chen J N, Liu M 2012 Sci. China Tech. Sci. 55 888

    [11]

    Sabina S, Francesco D, Alessio L, Gabriele C, Olivier S 2012 Appl. Phys. Exp. 5 021102

    [12]

    Hsieh C R, Lai C H, Lin B C, Lou J C, Lin J K, Lai Y L, Lai H L 2007 IEEE Electron Devices and Solid-State Circuits 629

    [13]

    Wang X G, Liu J, Bai W P, Kong D L 2004 IEEE Trans. Electron Devices 51 597

    [14]

    Chen F H, Pan T M, Chiu F C 2011 IEEE Trans. Electron Devices 58 3847

    [15]

    Swift C T, Chindalore G L, Harber K, Harp T S, Hoefler A, Hong C M, Ingersoll P A, Li C B, Prinz E J, Yater J A 2002 IEDM Tech. Dig. 927

    [16]

    Rosmeulen M, Sleeckx E, De Meyer K 2002 IEDM Tech. Dig. 189

    [17]

    Ishiduki M, Fukuzumi Y, Katsumata R, Kito M, Kido M, Tanaka H, Komori Y, Nagata Y, Fujiwara T, Maeda Y, Mikajiri Y, Oota S, Honda M, Iwata Y, Kirisawa R, Aochi H, Nitayama A 2009 IEDM Tech. Dig. 625

    [18]

    Luo J, Lu J L, Zhao H P, Dai Y H, Liu Q, Yang J, Jiang X W, Xu H F 2014 J. Semicond. 35 014004

    [19]

    Tan Y N, Chim W K, Cho B J, Choi W K 2004 IEEE Trans. Electron Devices 51 1143

    [20]

    Wang J Y, Dai Y H, Zhao Y Y, Xu J B, Yang F, Dai G Z, Yang J 2014 Acta Phys. Sin. 63 203101 (in Chinese) [汪家余, 代月花, 赵远洋, 徐建彬, 杨菲, 代广珍, 杨金 2014 物理学报 63 203101]

    [21]

    Zhao Q, Zhou M X, Zhang W, Liu Q, Li X F, Liu M, Dai Y H 2013 J. Semicond. 34 032001

    [22]

    Tang W, Sanville E, Henkelman G 2009 J. Phys.:Condens. Matter 21 084204

    [23]

    Sanville E, Kenny S D, Smith R, Henkelman G 2007 J. Comput. Chem. 28 899

    [24]

    Hou Z F, Gong X G, Li Q 2009 J. Appl. Phys. 106 014104

    [25]

    Deng S H, Jiang Z L 2014 Acta Phys. Sin. 63 077101 (in Chinese) [邓胜华, 姜志林 2014 物理学报 63 077101]

    [26]

    Tang F L, Liu R, Xue H T, Lu W J, Feng Y D, Rui Z Y, Huang M 2014 Chin. Phys. B 23 077301

    [27]

    Zheng S W, He M, Li S T, Zhang Y 2014 Chin. Phys. B 23 087101

    [28]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [29]

    John P P, Kieron B, Matthias E 1996 Phys. Rev. Lett. 77 3865

    [30]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

  • [1] 邓珊珊, 宋平, 刘潇贺, 姚森, 赵谦毅. 吉帕级单轴应力下Mn3Sn单晶的磁化率增强. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240287
    [2] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
计量
  • 文章访问数:  4216
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-06
  • 修回日期:  2015-03-08
  • 刊出日期:  2015-07-05

/

返回文章
返回