搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弯曲Cu纳米线相干X射线衍射图的计算

高凤菊

引用本文:
Citation:

弯曲Cu纳米线相干X射线衍射图的计算

高凤菊

Calculation of coherent X-ray diffraction from bent Cu nanowires

Gao Feng-Ju
PDF
导出引用
  • 本文提出了一种计算弯曲纳米线的相干X射线衍射图的方法, 即倒空间旋转法. 我们利用该方法计算了弯曲Cu纳米线的相干X射线衍射图, 并与常规方法的计算结果进行了比较. 发现利用倒空间旋转法计算所需的时间约为常规方法的1/(2N+1) (N为镜像盒子的个数). 另外, 倒空间旋转法可以拓展到其他纳米线的变形情况, 如拉伸(压缩)和扭转, 本文也对其作了相应的讨论.
    A method of calculating coherent X-ray diffraction from a bent nanowire, simulated by the molecular dynamics technique under the bent periodic boundary condition, is reported. The segment of nanowire under the X-ray beam consists of the central box and 2N image boxes. X-ray diffraction from this segment of nanowire is obtained from a single calculation of the amplitude of diffraction from the atoms in the central box according to the kinematic theory. Contributions from the image boxes are then obtained by rotations of this amplitude in the reciprocal space and additional phase factors to take into account the position of the image boxes with respect to the central box. This method will be called rotation in the reciprocal space (RRS). Comparison between the RRS and the full calculation of the diffracted amplitude from all the atoms in the central box and the 2N image boxes (full kinematic sum) is done in the Cu nanowire case. The bending of an FCC Cu nanowire oriented along a direction with an equilibrium shape made up of {100} and {111} facets is calculated by using the SMA (The second-moment approximation of the density of states in the tight-binding formalism) potential. The Cartesian x, y, and z axes correspond, respectively, to [112], [111] and [110] directions. The bending occurs in the y-z plane. The calculation time of the RRS method is about 1/(2N+1) times that obtained by doing the full kinematic sum, the RRS method being more efficient when the number of image boxes N is a bigger one. A very small difference in the calculated intensity between the RRS and the full kinematic sum comes from the interpolation in the reciprocal space. So the RRS method is more accurate, when there are more points calculated in the reciprocal space. Similarly, the RRS method can be applied to tension, compression and torsion of the nanowires, When using the molecular dynamics simulation under periodic boundary conditions. In the cases of tension and compression, it is simpler as only the phase factors have to be considered. Results are also reported in this paper.
    • 基金项目: 河北省高等学校科学技术研究项目(批准号:Z2013060)和法国国家科研署项目(批准号:ANR-11-BS10-01401MECANIX)资助的课题.
    • Funds: Project supported by the Program for Science and Technology of University and College, Hebei Provance, China (Grant No. Z2013060), and ANR (Grant No. ANR-11-BS10-01401 MECANIX).
    [1]

    Somogyi A, Tucoulou R, Martinez-Criado G, Homs A, Cauzid J, Bleuet P, Bohic S, Simionovici A 2005 J. Synchrotron Rad. 12 208

    [2]

    Bonanno P L, Gautier S, Gmili Y El, Moudakir T, Sirenko A A, Kazimirov A, Cai Z H, Martin J, Goh W H, Martinez A, Ramdane A, Gratiet L L, Malouf N, Assouar M B, Ougazzaden A 2013 Thin Solid Films. 541 46

    [3]

    Hong X G, Du L C, Ye M P, Weng Y X 2004 Chin. Phys. Soc. 13 720

    [4]

    Wang C L, Tsai S J, Chen J W, Shiu H W, Chang L Y, Lin K H, Hsu H C, Chen Y C, Chen C H, Wu C L 2014 App. Phy. Let. 105 123115

    [5]

    Yamada T, Wang J, Sakata, O, Sandu C S, He Z B, Kamo T, Yasui S, Setter N, Funakubo H 2010 J. Eur. Ceram. Soc. 30 3259

    [6]

    Chamard V, Diaz A, Stangl J, Labat S 2009 J. Strain Anal. Eng. Des. 44 533

    [7]

    Chamard V, Stangl J, Labat S, Mandl B, Lechner R T, Metzger T H 2008 J. Appl. Crystallogr. 41 272

    [8]

    Keplinger M, Kriegner D, Stangl J, ThomasM, Bernhard M, Wintersberger E, Bauer G 2010 Nucl. Instr. Meth. Phys. Res B 268 316

    [9]

    Ren Z, Mastropietro F, Davydok A, Langlais S, Richard M I, Furter J J, Thomas O, Dupraz M, Verdier M, Beutier G, Boesecke P, Cornelius T W 2014 J. Synchrotron Rad. 21 1128

    [10]

    Cai W, Fong W, Elsen E, Weinberger C R 2008 J. Mech. Phys. Solids 56 3242

    [11]

    Rosato V, Guillope M, Legrand B 1989 Philos. Mag. A 59 321

    [12]

    Gailhanou M, Roussel J M 2013 Phy. Rev. B 88 224101

  • [1]

    Somogyi A, Tucoulou R, Martinez-Criado G, Homs A, Cauzid J, Bleuet P, Bohic S, Simionovici A 2005 J. Synchrotron Rad. 12 208

    [2]

    Bonanno P L, Gautier S, Gmili Y El, Moudakir T, Sirenko A A, Kazimirov A, Cai Z H, Martin J, Goh W H, Martinez A, Ramdane A, Gratiet L L, Malouf N, Assouar M B, Ougazzaden A 2013 Thin Solid Films. 541 46

    [3]

    Hong X G, Du L C, Ye M P, Weng Y X 2004 Chin. Phys. Soc. 13 720

    [4]

    Wang C L, Tsai S J, Chen J W, Shiu H W, Chang L Y, Lin K H, Hsu H C, Chen Y C, Chen C H, Wu C L 2014 App. Phy. Let. 105 123115

    [5]

    Yamada T, Wang J, Sakata, O, Sandu C S, He Z B, Kamo T, Yasui S, Setter N, Funakubo H 2010 J. Eur. Ceram. Soc. 30 3259

    [6]

    Chamard V, Diaz A, Stangl J, Labat S 2009 J. Strain Anal. Eng. Des. 44 533

    [7]

    Chamard V, Stangl J, Labat S, Mandl B, Lechner R T, Metzger T H 2008 J. Appl. Crystallogr. 41 272

    [8]

    Keplinger M, Kriegner D, Stangl J, ThomasM, Bernhard M, Wintersberger E, Bauer G 2010 Nucl. Instr. Meth. Phys. Res B 268 316

    [9]

    Ren Z, Mastropietro F, Davydok A, Langlais S, Richard M I, Furter J J, Thomas O, Dupraz M, Verdier M, Beutier G, Boesecke P, Cornelius T W 2014 J. Synchrotron Rad. 21 1128

    [10]

    Cai W, Fong W, Elsen E, Weinberger C R 2008 J. Mech. Phys. Solids 56 3242

    [11]

    Rosato V, Guillope M, Legrand B 1989 Philos. Mag. A 59 321

    [12]

    Gailhanou M, Roussel J M 2013 Phy. Rev. B 88 224101

  • [1] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
计量
  • 文章访问数:  4714
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-12
  • 修回日期:  2015-01-28
  • 刊出日期:  2015-07-05

/

返回文章
返回