搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学

刘玉柱 肖韶荣 王俊锋 何仲福 邱学军 Gregor Knopp

引用本文:
Citation:

氟利昂F1110分子在飞秒激光脉冲作用下的多光子解离动力学

刘玉柱, 肖韶荣, 王俊锋, 何仲福, 邱学军, Gregor Knopp

Multi-photon dissociation dynamics of Freon 1110 induced by femtosecond laser pulse

Liu Yu-Zhu, Xiao Shao-Rong, Wang Jun-Feng, He Zhong-Fu, Qiu Xue-Jun, Gregor Knopp
PDF
导出引用
  • 含氟利昂在内的含氯化合物在太阳光辐射下解离生成破坏臭氧的游离态氯原子, 是破坏大气臭氧层的主要元凶. 本文利用飞行时间质谱技术及离子速度成像技术研究了氟利昂F1110(四氯乙烯)分子在800 nm飞秒脉冲光作用下的多光子解离动力学. 利用飞行时间质谱探测技术, 得到了四氯乙烯在800 nm飞秒激光脉冲作用下发生多光子解离产生的碎片质谱, 发现了两个主要碎片离子C2Cl3+和 C2Cl2+. 对应的解离机理分别为单个C-Cl键断裂直接生产氯自由基C2Cl4+C2Cl3+ +Cl 和两个CCl 键断裂C2Cl4+C2Cl2++2Cl: 利用离子速度成像技术对这两种机理产生的碎片离子进行成像, 得到了C2Cl3+ 和C2Cl2+ 离子的速度影像. 分析发现这两个碎片离子的动能分布均可由两个高斯分布曲线拟合, 说明这两种解离机理分别还对应了两种解离通道. 通过影像分析得到了解离的平动能分布和角向分布各向异性参数等详尽的动力学信息. 通过高精度密度泛函理论计算对解离动力学进行了进一步的分析和讨论.
    The ozone layer which absorbs harmful solar UV radiation is an essential umbrella for human beings. However, a large number of exhausts of chlorine compounds including freon released by people in the atmosphere pose a great threat to the ozone layer. Freon dissociates into the product of chlorine radicals induced by UV sunlight radiation, which are found to be the main culprit for the destruction of atmospheric ozone. In this paper, time-of-flight mass spectrometry and velocity map imaging technique are coupled for investigating the multiphoton dissociation dynamics of Freon 1110 (C2Cl4, Tetrachloroethylene) induced by ultrafast short laser pulse on a femtosecond time scale at 800 nm. Fragments mass spectra of C2Cl4 are measured by time-of-flight mass spectrometry. Together with the parent ion C2Cl4+, two dominant fragment ions C2Cl3+ and C2Cl2+ are discovered in the multi-photon ionization and dissociation process in the experiment. By analyzing the above mass spectra, two corresponding photodissociation mechanisms are discussed and listed as follows: 1) C2Cl4+C2Cl3+ +Cl with single CCl bond breaking and direct production of Cl radical; 2) C2Cl4+C2Cl2+ +2Cl with double CCl bonds breaking and production of two Cl radicals. Also, ion images of these two observed fragment ions C2Cl3+ and C2Cl2+ are measured by velocity map imaging apparatus. The kinetic energy distributions of these two fragment ions are determined from the measured velocity map images. The kinetic energy distributions of both C2Cl3+ and C2Cl2+ can be well fitted by two Gaussion distributions. It indicates that both fragments C2Cl3+ and C2Cl2+ are from two production channels. The peak energies for each channel are fitted. More detailed photodissociation dynamics is obtained by analyzing the angular distribution of the generated fragment ions. The anisotropy parameter values are measured to be 0.46 (low energy channel) and 0.52 (high energy channel) for the fragment C2Cl3+, and 0.41 (low energy channel) and 0.66 (high energy channel) for the fragment C2Cl2+, respectively. The ratios between parallel transition and perpendicular transition are determined for all the observed channels for producing fragments C2Cl3+ and C2Cl2+. In addition, density functional theory calculations at a high-precision level are also performed on photodissociation dynamics for further analysis and discussion. The optimized geometries of ground state and ionic state of C2Cl4 are obtained and compared with density functional theory calculation at the level of B3LYP/6-311G++(d,p). The different structures of the ground and ionic states are given and discussed. The calculated information about ionic states of C2Cl4, including energy level and oscillator strength for the ionic excited states, is also given for analyzing the photodissociation dynamics of the C2Cl4 ions.
      通信作者: 刘玉柱, yuzhu.liu@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 11304157, 11504175, 11404411)和江苏省六大人才高峰高层次人才项目(批准号: 2015-JNHB-011)资助的课题.
      Corresponding author: Liu Yu-Zhu, yuzhu.liu@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304157, 11504175, 11404411) and Six Talent Peaks Project in Jiangsu Province (Grant No. 2015-JNHB-011).
    [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207

    [3]

    Wang D S, Kim M S, Choe J C, Ha T K 2001 J. Chem. Phys. 115 5454

    [4]

    Butler J H, Battle M, Bender M L, Montzka S A, Clarke A D, Saltzman E S, Sucher C M, Severinghaus J P, Elkins J W 1999 Nature 399 749

    [5]

    Hobe M 2007 Science 318 1878

    [6]

    Schiermeier Q 2007 Nature 449 382

    [7]

    Pope F D, Hansen J C, Bayes K D, Friedl R R, Sander S P 2007 J. Phys. Chem. A 111 4322

    [8]

    Hobe M, Salawitch R J, Canty T, Keller-Rudek H, Moortgat G K, Groo J U, Mller R, Stroh F 2007 Atmos. Chem. Phys. 7 3055

    [9]

    Crolin D, Piancastelli M N, Stolte W C, Lindle D W 2009 J. Chem. Phys. 131 244301

    [10]

    Zuiderweg A, Kaiser J, Laube J C, Rockmann T, Holzinger R 2011 Atmos. Chem. Phys. Discuss. 11 33173

    [11]

    Chen H Y, Lien C Y, Lin W Y, Lee Y T, Lin J J 2009 Science 324 781

    [12]

    Ma J, Ding L, Gu X J, Zheng H Y, Fang L, Zhang W J, Huang C Q, Wei L X, Yang B, Qi F 2006 Acta Phys. Sin. 55 137 (in Chinese) [马靖, 丁蕾, 顾学军, 郑海洋, 方黎, 张为俊, 黄朝群, 卫立夏, 杨斌, 齐飞 2006 物理学报 55 137]

    [13]

    Herath N, Hause M L, Suits A G 2011 J. Chem. Phys. 134 164301

    [14]

    Saha A, Upadhyaya H P, Kumar A, Naik P D 2014 Chem. Phys. 428 127

    [15]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [16]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [17]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese) [刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 物理学报 61 193301]

    [18]

    Liu Y Z, Gerber T, Knopp G 2014 Acta Phys. Sin. 63 244208 (in Chinese) [刘玉柱, Gerber T, Knopp G 2014 物理学报 63 244208]

    [19]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc

    [20]

    Watanabe K, Nakayama T, Mottl J 1962 J. Quant. Spectry. Radiative Transfer 2 369

    [21]

    Zare R N 1972 Mol. Photochem. 4 1

  • [1]

    Molina M J, Rowland F S 1974 Nature 249 810

    [2]

    Farman J C, Gardiner B G, Shanklin J D 1985 Nature 315 207

    [3]

    Wang D S, Kim M S, Choe J C, Ha T K 2001 J. Chem. Phys. 115 5454

    [4]

    Butler J H, Battle M, Bender M L, Montzka S A, Clarke A D, Saltzman E S, Sucher C M, Severinghaus J P, Elkins J W 1999 Nature 399 749

    [5]

    Hobe M 2007 Science 318 1878

    [6]

    Schiermeier Q 2007 Nature 449 382

    [7]

    Pope F D, Hansen J C, Bayes K D, Friedl R R, Sander S P 2007 J. Phys. Chem. A 111 4322

    [8]

    Hobe M, Salawitch R J, Canty T, Keller-Rudek H, Moortgat G K, Groo J U, Mller R, Stroh F 2007 Atmos. Chem. Phys. 7 3055

    [9]

    Crolin D, Piancastelli M N, Stolte W C, Lindle D W 2009 J. Chem. Phys. 131 244301

    [10]

    Zuiderweg A, Kaiser J, Laube J C, Rockmann T, Holzinger R 2011 Atmos. Chem. Phys. Discuss. 11 33173

    [11]

    Chen H Y, Lien C Y, Lin W Y, Lee Y T, Lin J J 2009 Science 324 781

    [12]

    Ma J, Ding L, Gu X J, Zheng H Y, Fang L, Zhang W J, Huang C Q, Wei L X, Yang B, Qi F 2006 Acta Phys. Sin. 55 137 (in Chinese) [马靖, 丁蕾, 顾学军, 郑海洋, 方黎, 张为俊, 黄朝群, 卫立夏, 杨斌, 齐飞 2006 物理学报 55 137]

    [13]

    Herath N, Hause M L, Suits A G 2011 J. Chem. Phys. 134 164301

    [14]

    Saha A, Upadhyaya H P, Kumar A, Naik P D 2014 Chem. Phys. 428 127

    [15]

    Eppink A T J B, Parker D H 1997 Rev. Sci. Instrum. 68 3477

    [16]

    Parker D H, Eppink A T J B 1997 J. Chem. Phys. 107 2357

    [17]

    Liu Y Z, Xiao S R, Zhang C Y, Zheng G G, Chen Y Y 2012 Acta Phys. Sin. 61 193301 (in Chinese) [刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云 2012 物理学报 61 193301]

    [18]

    Liu Y Z, Gerber T, Knopp G 2014 Acta Phys. Sin. 63 244208 (in Chinese) [刘玉柱, Gerber T, Knopp G 2014 物理学报 63 244208]

    [19]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2004 Gaussian 03, Revision D.01, Pittsburgh, PA Gaussian Inc

    [20]

    Watanabe K, Nakayama T, Mottl J 1962 J. Quant. Spectry. Radiative Transfer 2 369

    [21]

    Zare R N 1972 Mol. Photochem. 4 1

  • [1] 梁玮宸, 王昱寒, 张熙, 王飞, 贾凤东, 薛平, 钟志萍. 铷离子-铷原子混合阱飞行时间谱的拟合和仿真模拟. 物理学报, 2023, 72(9): 093401. doi: 10.7498/aps.72.20222273
    [2] 赵嘉琳, 程开, 于雪克, 赵纪军, 苏艳. 几种典型含能材料光激发解离的含时密度泛函理论研究. 物理学报, 2021, 70(20): 203301. doi: 10.7498/aps.70.20210670
    [3] 颜逸辉, 刘玉柱, 丁鹏飞, 尹文怡. 利用速度成像技术研究碘乙烷多光子电离解离动力学. 物理学报, 2018, 67(20): 203301. doi: 10.7498/aps.67.20181468
    [4] 罗金龙, 凌丰姿, 李帅, 王艳梅, 张冰. 丁酮3s里德堡态的超快光解动力学研究. 物理学报, 2017, 66(2): 023301. doi: 10.7498/aps.66.023301
    [5] 秦朝朝, 黄燕, 彭玉峰. Br2分子在360610 nm的光解离动力学研究. 物理学报, 2017, 66(19): 193301. doi: 10.7498/aps.66.193301
    [6] 冉茂怡, 胡耀垓, 赵正予, 张援农. 高功率微波注入对流层对氟利昂的影响. 物理学报, 2017, 66(4): 045101. doi: 10.7498/aps.66.045101
    [7] 刘玉柱, 邓绪兰, 李帅, 管跃, 李静, 龙金友, 张冰. 氟利昂F114B2分子在飞秒紫外辐射下的解离动力学. 物理学报, 2016, 65(19): 193301. doi: 10.7498/aps.65.193301
    [8] 刘玉柱, 陈云云, 郑改革, 金峰, Gregor Knopp. 氟利昂F113分子在飞秒激光作用下的多光子电离解离动力学. 物理学报, 2016, 65(5): 053302. doi: 10.7498/aps.65.053302
    [9] 杨雪, 闫冰, 连科研, 丁大军. 1,2-环己二酮基态光解离反应的理论研究. 物理学报, 2015, 64(21): 213101. doi: 10.7498/aps.64.213101
    [10] 姚洪斌, 张季, 彭敏, 李文亮. H2+在强激光场中的解离及其量子调控的理论研究. 物理学报, 2014, 63(19): 198202. doi: 10.7498/aps.63.198202
    [11] 王燕, 姚志, 冯春雷, 刘佳宏, 丁洪斌. 355 nm激光光电离甲醛飞行时间质谱的研究. 物理学报, 2012, 61(1): 013301. doi: 10.7498/aps.61.013301
    [12] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究. 物理学报, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [13] 刘玉柱, 肖韶荣, 张成义, 郑改革, 陈云云. 离子速度成像系统校准及1,4-氯溴丁烷的紫外光解动力学. 物理学报, 2012, 61(19): 193301. doi: 10.7498/aps.61.193301
    [14] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算. 物理学报, 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [15] 姚关心, 汪小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤. 丙酮分子的共振增强多光子电离解离过程的实验研究. 物理学报, 2006, 55(5): 2210-2214. doi: 10.7498/aps.55.2210
    [16] 石 勇, 李奇峰, 汪 华, 戴静华, 刘世林, 马兴孝. 由飞行时间质谱峰形获取光解碎片平动能分布. 物理学报, 2005, 54(5): 2418-2423. doi: 10.7498/aps.54.2418
    [17] 罗晓琳, 孔祥蕾, 牛冬梅, 渠洪波, 李海洋. 团簇增强的纳秒激光电离产生Xez+(z≤20)高价离子. 物理学报, 2005, 54(2): 606-611. doi: 10.7498/aps.54.606
    [18] 王 仲, 张立敏, 王 峰, 李 江, 俞书勤. 281—332nm SO+2的光碎片激发谱研究. 物理学报, 2003, 52(12): 3027-3034. doi: 10.7498/aps.52.3027
    [19] 徐海峰, 刘世林, 马兴孝, 戴东旭, 解金春, 沙国河. 紫外波段CH2I2分子的光解离动力学研究. 物理学报, 2002, 51(2): 240-246. doi: 10.7498/aps.51.240
    [20] 胡正发, 王振亚, 孔祥蕾, 张先燚, 李海洋, 周士康, 王娟, 武国华, 盛六四, 张允武. 甲胺分子的同步辐射光电离解离质谱. 物理学报, 2002, 51(2): 235-239. doi: 10.7498/aps.51.235
计量
  • 文章访问数:  5426
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-03
  • 修回日期:  2016-03-15
  • 刊出日期:  2016-06-05

/

返回文章
返回