搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近零折射率材料的古斯汉欣位移的特性研究

陆志仁 梁斌明 丁俊伟 陈家璧 庄松林

引用本文:
Citation:

近零折射率材料的古斯汉欣位移的特性研究

陆志仁, 梁斌明, 丁俊伟, 陈家璧, 庄松林

Goos-Hnchen shift based on nearzero-refractive-index materials

Lu Zhi-Ren, Liang Bin-Ming, Ding Jun-Wei, Chen Jia-Bi, Zhuang Song-Lin
PDF
导出引用
  • 古斯汉欣位移是一种特殊的光学现象,由于纳米光学的不断普及,古斯汉欣位移成为了一个极其有价值的研究. 本文采用以硅为介质柱周期排列的正方形的光子晶体,采用时域有限差分方法,研究了波长以及温度对于近零折射率材料中的古斯汉欣位移的影响. 研究表明,波长对于古斯汉欣位移的影响非常大,而温度对于古斯汉欣位移的影响比较小.
    Goos-Hnchen shift is a special optical phenomenon. With the development of the nano-optics, Goos-Hnchen shift has become one of the most valuable and hottest issues in optical field. Meanwhile, due to the unique feature of the near-zero-refractive-index material, it has been used in many fields, but the effect of Goos-Hnchen shift has little studied and received less attention. As a result, the purpose of this paper is to analyze the Goos-Hnchen shift based on near-zero-refractive-index material. In the paper, the photonic crystal with specific parameter is used to simulate the near-zero-refractive-index material, and the measurement in the simulation is based on finite difference time domain. We approach the issue by studying whether and how the wavelength and temperature will affect the Goos-Hnchen shift based on near-zero-refractive-index material. After the simulation at different wavelengths and temperatures based on the incidence angle which gives rise to total reflection, the results of the simulation reveal that when wavelength is between 1.648a and 1.848a (not including 1.848a), the Goos-Hnchen shift is positive and increases gradually, and the total reflection angle decreases. When wavelength is between 1.848a and 2.048a, the total reflection angle increases. When the wavelength is in a range between 1.848a and 1.858a, the Goos-Hnchen shift is negative. When the wavelength is above 1.858a, the Goos-Hnchen shift is negative and increases gradually. When the temperature increases from 0 ℃ to 100 ℃, the Goose-Hnchen shift is unsimilar to the situation of different wavelengths, and fluctuates in the interval at wavelengths ranging from 1.648a to 1.848a, and the total reflection angle increases gradually. Goose-Hnchen shift decreases at a wavelength of 2.048, and the total reflection angle decreases gradually, but a little. Based on the simulation result, it is concluded that the variations of the wavelength and temperature will affect the Goos-Hnchen shift based on near-zero-refractive-index material, and the effective value is in a range from about 1a to 4a, which is not a small value to the shift especially in some precision instruments. As a result, the changes of wavelength and temperature should be taken into consideration, when Goos-Hnchen shift based on near-zero-refractive-index materials is measured or used in research. These findings are expected to be instructive for device design and nano-optics.
      通信作者: 梁斌明, Liangbinming@sina.com
      Corresponding author: Liang Bin-Ming, Liangbinming@sina.com
    [1]

    Goos F, Hanchen H 1947 Ann. Phys. 436 333

    [2]

    Seshadri S R 1988 J. Opt. Soc. Am. 5 583

    [3]

    Tran N H, Dutriaux L, Balcou P, Floch A L, Bretenaker F 1995 Opt. Lett. 20 1233

    [4]

    Alishahi F, Mehrany K 2010 Opt. Lett. 35 1759

    [5]

    Fang Y T, Liu Y Z, Shen T G 2006 Chin. Opt. Lett. 4 230

    [6]

    Soboleva I V, Moskalenko V V, Fedyanin A A 2012 Phys. Rev. Lett. 108 123901

    [7]

    Berman P B 2002 Phys. Rev. E 66 067603

    [8]

    Xiang Y, Dai X, Wen S 2007 Appl. Phys. A 87 285

    [9]

    Zhou L M, Zou C L, Han Z F 2011 Opt. Lett. 36 624

    [10]

    Lin S Y, Hietala V M, Wang L, Jones E 1996 Opt. Lett. 21 1771

    [11]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton university press) pp66-93

    [12]

    Notomi M 2000 Phys. Rev. B 62 10696

    [13]

    Maigyte L, Purlys V, Trul J, Peckus M, Cojocaru C, Gailevicius D, Mlinauska M, Staliuns K 2013 Opt. Lett. 38 2376

    [14]

    Luo C, Johnson S G, Joannopoulos J D, Pendry J B 2003 Phys. Rev. B 68 045115

    [15]

    Felbacq D, Moreau A, Smaali R 2003 Opt. Lett. 28 1633

    [16]

    Shadrivov I V, Zharov A A, Kivshar Y S 2003 Appl. Phys. Lett. 83 2713

    [17]

    Zhou L M, Zou C L, Han Z F, Guo G C, Sun F W 2011 Opt. Lett. 36 624

    [18]

    Rechtsman M C, Kartashov Y V, Setzpfandt F, Trompeter H, Torner L, Pertsch T, Peschel U, Szameit A 2011 Opt. Lett. 36 4446

    [19]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nature Mater. 10 582

    [20]

    Huang X Q, Chen Z T {2015 Acta Phys. Sin. 64 184208 (in Chinese) [黄学勤, 陈子亭 2015 物理学报 64 184208]

    [21]

    Geng T, Wu N, Dong X M, Gao X M 2015 Acta Phys. Sin. 64 154210 (in Chinese) [耿滔, 吴娜, 董祥美, 高秀敏 2015 物理学报 64 154210]

    [22]

    Mocella V, Cabrini S, Chang A S P, Dardano P, Moretti L, Rendina I, Olynick D, Harteneck B, Dhuey S 2009 Phys. Rev. Lett. 102 133902

    [23]

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 物理学报 64 034203]

    [24]

    Suchowski H, O'Brien K, Wong Z J, Salandrino A, Yin X, Zhang X {2013 Science 342 1233

  • [1]

    Goos F, Hanchen H 1947 Ann. Phys. 436 333

    [2]

    Seshadri S R 1988 J. Opt. Soc. Am. 5 583

    [3]

    Tran N H, Dutriaux L, Balcou P, Floch A L, Bretenaker F 1995 Opt. Lett. 20 1233

    [4]

    Alishahi F, Mehrany K 2010 Opt. Lett. 35 1759

    [5]

    Fang Y T, Liu Y Z, Shen T G 2006 Chin. Opt. Lett. 4 230

    [6]

    Soboleva I V, Moskalenko V V, Fedyanin A A 2012 Phys. Rev. Lett. 108 123901

    [7]

    Berman P B 2002 Phys. Rev. E 66 067603

    [8]

    Xiang Y, Dai X, Wen S 2007 Appl. Phys. A 87 285

    [9]

    Zhou L M, Zou C L, Han Z F 2011 Opt. Lett. 36 624

    [10]

    Lin S Y, Hietala V M, Wang L, Jones E 1996 Opt. Lett. 21 1771

    [11]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (Princeton: Princeton university press) pp66-93

    [12]

    Notomi M 2000 Phys. Rev. B 62 10696

    [13]

    Maigyte L, Purlys V, Trul J, Peckus M, Cojocaru C, Gailevicius D, Mlinauska M, Staliuns K 2013 Opt. Lett. 38 2376

    [14]

    Luo C, Johnson S G, Joannopoulos J D, Pendry J B 2003 Phys. Rev. B 68 045115

    [15]

    Felbacq D, Moreau A, Smaali R 2003 Opt. Lett. 28 1633

    [16]

    Shadrivov I V, Zharov A A, Kivshar Y S 2003 Appl. Phys. Lett. 83 2713

    [17]

    Zhou L M, Zou C L, Han Z F, Guo G C, Sun F W 2011 Opt. Lett. 36 624

    [18]

    Rechtsman M C, Kartashov Y V, Setzpfandt F, Trompeter H, Torner L, Pertsch T, Peschel U, Szameit A 2011 Opt. Lett. 36 4446

    [19]

    Huang X Q, Lai Y, Hang Z H, Zheng H H, Chan C T 2011 Nature Mater. 10 582

    [20]

    Huang X Q, Chen Z T {2015 Acta Phys. Sin. 64 184208 (in Chinese) [黄学勤, 陈子亭 2015 物理学报 64 184208]

    [21]

    Geng T, Wu N, Dong X M, Gao X M 2015 Acta Phys. Sin. 64 154210 (in Chinese) [耿滔, 吴娜, 董祥美, 高秀敏 2015 物理学报 64 154210]

    [22]

    Mocella V, Cabrini S, Chang A S P, Dardano P, Moretti L, Rendina I, Olynick D, Harteneck B, Dhuey S 2009 Phys. Rev. Lett. 102 133902

    [23]

    Lin H X, Yu X N, Liu S Y 2015 Acta Phys. Sin. 64 034203 (in Chinese) [林海笑, 俞昕宁, 刘士阳 2015 物理学报 64 034203]

    [24]

    Suchowski H, O'Brien K, Wong Z J, Salandrino A, Yin X, Zhang X {2013 Science 342 1233

  • [1] 周晓霞, 陈英, 蔡力. 基于零折射率介质的超窄带光学滤波器. 物理学报, 2023, 72(17): 174205. doi: 10.7498/aps.72.20230394
    [2] 徐小虎, 陈永强, 郭志伟, 孙勇, 苗向阳. 等效零折射率材料微腔中均匀化腔场作用下的简正模劈裂现象. 物理学报, 2018, 67(2): 024210. doi: 10.7498/aps.67.20171880
    [3] 王海啸, 徐林, 蒋建华. Dirac光子晶体. 物理学报, 2017, 66(22): 220302. doi: 10.7498/aps.66.220302
    [4] 高汉峰, 张欣, 吴福根, 姚源卫. 二维三组元声子晶体中的半狄拉克点及奇异特性. 物理学报, 2016, 65(4): 044301. doi: 10.7498/aps.65.044301
    [5] 耿滔, 吴娜, 董祥美, 高秀敏. 基于磁流体光子晶体的可调谐近似零折射率研究. 物理学报, 2016, 65(1): 014213. doi: 10.7498/aps.65.014213
    [6] 黄学勤, 陈子亭. k=0处的类狄拉克锥. 物理学报, 2015, 64(18): 184208. doi: 10.7498/aps.64.184208
    [7] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理. 物理学报, 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [8] 赵浩, 沈义峰, 张中杰. 光子晶体中基于有效折射率接近零的光束准直出射. 物理学报, 2014, 63(17): 174204. doi: 10.7498/aps.63.174204
    [9] 赵秋玲, 吕浩, 张清悦, 牛东杰, 王霞. 染料掺杂光子晶体荧光带隙边缘的激射研究. 物理学报, 2013, 62(4): 044208. doi: 10.7498/aps.62.044208
    [10] 韩奎, 王娟娟, 周菲, 沈晓鹏, 沈义峰, 吴玉喜, 唐刚. 基于光子晶体的Kretschmann结构中自准直光束的Goos-Hänchen位移研究. 物理学报, 2013, 62(4): 044221. doi: 10.7498/aps.62.044221
    [11] 童元伟, 田双, 庄松林. 等效折射率为非-1时的亚波长成像. 物理学报, 2011, 60(5): 054201. doi: 10.7498/aps.60.054201
    [12] 刘丽想, 董丽娟, 刘艳红, 杨春花, 杨成全, 石云龙. 平均折射率为零的光子晶体中缺陷模频率特性的实验研究. 物理学报, 2011, 60(8): 084218. doi: 10.7498/aps.60.084218
    [13] 童元伟, 毛宇, 庄松林. 光频段多频率域负折射率材料的数值研究. 物理学报, 2010, 59(8): 5553-5558. doi: 10.7498/aps.59.5553
    [14] 孔令凯, 郑志强, 冯卓宏, 李小燕, 姜翠华, 明海. 二维空气环型光子晶体的负折射成像特性. 物理学报, 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
    [15] 刘 靖, 孙军强, 黄德修, 黄重庆, 吴 铭. 渐变折射率光量子阱对束缚态能级的调整. 物理学报, 2007, 56(4): 2281-2285. doi: 10.7498/aps.56.2281
    [16] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [17] 王同标, 刘念华. 正负折射率材料组成的一维光子晶体的能带及电场. 物理学报, 2007, 56(10): 5878-5882. doi: 10.7498/aps.56.5878
    [18] 张 波, 王 智. 二维空气孔型光子晶体负折射平板透镜的减反层. 物理学报, 2007, 56(3): 1404-1408. doi: 10.7498/aps.56.1404
    [19] 厉以宇, 顾培夫, 张锦龙, 李明宇, 刘 旭. 波状结构二维光子晶体负折射现象的研究. 物理学报, 2006, 55(9): 4918-4922. doi: 10.7498/aps.55.4918
    [20] 许静平, 王立刚, 羊亚平. 利用含负折射率材料的光子晶体实现角度滤波器. 物理学报, 2006, 55(6): 2765-2770. doi: 10.7498/aps.55.2765
计量
  • 文章访问数:  6431
  • PDF下载量:  482
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-16
  • 修回日期:  2016-05-29
  • 刊出日期:  2016-08-05

/

返回文章
返回