-
利用非局域对称方法及相容tanh展开法研究了(2+1)维高阶Broer-Kaup系统.通过对Broer-Kaup系统的留数对称进行局域化,把非局域对称转化成等价的李点对称,同时得到了相应的对称群.利用相容tanh展开方法,得到了(2+1)维高阶Broer-Kaup系统的多种形式的波与孤立子的相互作用解,如椭圆周期波与孤立子等.为了研究这些解的动力学行为,本文给出了解的相应图像.
-
关键词:
- 非局域对称 /
- 相容tanh展开方法 /
- 相互作用解
[1] Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095
[2] Ablowitz M J, Kaup D J, Newell A C, Segur H 1973 Phys. Rev. Lett. 30 1262
[3] Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522
[4] Conte R 1989 Phys. Lett. A 140 383
[5] Yan Z Y 2015 Nonlinear Dyn. 82 119
[6] Liu H Z, Li J B, Liu L 2010 Nonlinear Dyn. 59 497
[7] Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese)[范恩贵2000物理学报 49 1409]
[8] Yan Z Y, Zhang H Q 2000 Acta Phys. Sin. 49 2113 (in Chinese)[闫振亚, 张鸿庆2000物理学报 49 2113]
[9] Zhang H P, Chen Y, Li B 2009 Acta Phys. Sin. 58 7393 (in Chinese)[张焕萍, 陈勇, 李彪2009物理学报 58 7393]
[10] Lou S Y, Hu X B 1997 J. Phys. A:Math. Gen. 30 L95
[11] Galas F 1992 J. Phys. A:Math. Gen. 25 L981
[12] Hu X R, Lou S Y, Chen Y 2012 Phys. Rev. E 85 056607
[13] Hu X R, Chen Y 2015 Chin. Phys. B 24 090203
[14] Huang L L, Chen Y 2016 Chin. Phys. B 25 060201
[15] Huang L L, Chen Y, Ma Z Y 2016 Commun. Theor. Phys. 66 189
[16] Tang X Y, Lou S Y 2003 J. Math. Phys. 44 4000
[17] Qian X M, Lou S Y, Hu X B 2004 J. Phys. A:Math. Gen. 37 2401
[18] Fan E G, Zhang J 2002 Phys. Lett. A 305 383
[19] Fan E G 2000 Phys. Lett. A 265 353
[20] Wang Y H 2014 Appl. Math. Lett. 38 100
[21] Cheng W G, Li B, Chen Y 2015 Commun. Nonlinear Sci. Numer. Simulat. 29 198
[22] Yang D, Lou S Y, Yu W F 2013 Commun. Theor. Phys. 60 387
[23] Chen C L, Lou S Y 2014 Commun. Theor. Phys. 61 545
[24] Lou S Y, Cheng X P, Tang X Y 2014 Chin. Phys. Lett. 31 070201
[25] Lou S Y, Hu X B 1997 J. Math. Phys. 38 6401
[26] Lin J, Li H M 2002 Z. Naturforsch. 57a 929
[27] Li D S, Gao F, Zhang H Q 2004 Chaos Solitons Fract. 20 1021
[28] Shin H J 2004 J. Phys. A:Math. Gen. 37 8017
[29] Shin H J 2005 Phys. Rev. E 71 036628
-
[1] Gardner C S, Greene J M, Kruskal M D, Miura R M 1967 Phys. Rev. Lett. 19 1095
[2] Ablowitz M J, Kaup D J, Newell A C, Segur H 1973 Phys. Rev. Lett. 30 1262
[3] Weiss J, Tabor M, Carnevale G 1983 J. Math. Phys. 24 522
[4] Conte R 1989 Phys. Lett. A 140 383
[5] Yan Z Y 2015 Nonlinear Dyn. 82 119
[6] Liu H Z, Li J B, Liu L 2010 Nonlinear Dyn. 59 497
[7] Fan E G 2000 Acta Phys. Sin. 49 1409 (in Chinese)[范恩贵2000物理学报 49 1409]
[8] Yan Z Y, Zhang H Q 2000 Acta Phys. Sin. 49 2113 (in Chinese)[闫振亚, 张鸿庆2000物理学报 49 2113]
[9] Zhang H P, Chen Y, Li B 2009 Acta Phys. Sin. 58 7393 (in Chinese)[张焕萍, 陈勇, 李彪2009物理学报 58 7393]
[10] Lou S Y, Hu X B 1997 J. Phys. A:Math. Gen. 30 L95
[11] Galas F 1992 J. Phys. A:Math. Gen. 25 L981
[12] Hu X R, Lou S Y, Chen Y 2012 Phys. Rev. E 85 056607
[13] Hu X R, Chen Y 2015 Chin. Phys. B 24 090203
[14] Huang L L, Chen Y 2016 Chin. Phys. B 25 060201
[15] Huang L L, Chen Y, Ma Z Y 2016 Commun. Theor. Phys. 66 189
[16] Tang X Y, Lou S Y 2003 J. Math. Phys. 44 4000
[17] Qian X M, Lou S Y, Hu X B 2004 J. Phys. A:Math. Gen. 37 2401
[18] Fan E G, Zhang J 2002 Phys. Lett. A 305 383
[19] Fan E G 2000 Phys. Lett. A 265 353
[20] Wang Y H 2014 Appl. Math. Lett. 38 100
[21] Cheng W G, Li B, Chen Y 2015 Commun. Nonlinear Sci. Numer. Simulat. 29 198
[22] Yang D, Lou S Y, Yu W F 2013 Commun. Theor. Phys. 60 387
[23] Chen C L, Lou S Y 2014 Commun. Theor. Phys. 61 545
[24] Lou S Y, Cheng X P, Tang X Y 2014 Chin. Phys. Lett. 31 070201
[25] Lou S Y, Hu X B 1997 J. Math. Phys. 38 6401
[26] Lin J, Li H M 2002 Z. Naturforsch. 57a 929
[27] Li D S, Gao F, Zhang H Q 2004 Chaos Solitons Fract. 20 1021
[28] Shin H J 2004 J. Phys. A:Math. Gen. 37 8017
[29] Shin H J 2005 Phys. Rev. E 71 036628
引用本文: |
Citation: |
计量
- 文章访问数: 1427
- PDF下载量: 356
- 被引次数: 0