-
本文采用195.8 nm飞秒激光将丁酮分子激发到S2(n,3s)里德堡态,在800 nm探测光的作用下获得时间分辨的飞行时间质谱.对实验结果的分析表明,由于丁酮位置具有一个甲基和一个乙基,使得Norrish I型解离反应表现出丰富的动力学特征.母体离子瞬态衰减的时间常数为(2.230.02)ps.丙酰基离子瞬态衰减与母体类似,只有一个为(2.150.02)ps的时间常数,说明丙酰基离子来自于母体的解离性电离.乙酰基离子的时间曲线拟合得到四个时间常数:1=(2.400.15)ps,2=(1.100.25)ps,3=(0.080.02)ps,4=(17.720.80)ps,分别对应于S2S1的内转换,S1态生成CH3CO()的初步解离,CH3CO()快速内转换为CH3CO(),以及CH3CO()基态上的二次解离.丁酮分子-CC键的解离存在分子内振动能量再分配(IVR)与势垒解离两种竞争的解离通道,但在该实验条件下,我们认为是通过分子内振动能量再分配通道发生解离的结果.
[1] Vacher J R, Jorand F, Blin-Simiand N, Pasquiers S 2008 Int. J. Mass Spectrom. 273 117
[2] Mu Y, Mellouki A 2000 J. Photochem. Photobiol. A 134 31
[3] Haas Y 2004 Photochem. Photobiol. Sci. 3 6
[4] Noyes W A, Porter G B, Jolley J E 1956 Chem. Rev. 56 49
[5] Diau E W G, Kötting C, Zewail A H 2003 Chem. Phys. Lett. 380 411
[6] Chen W K, Ho J W, Cheng P Y 2005 J. Phys. Chem. A 109 6805
[7] Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818
[8] Chen W K, Ho J W, Cheng P Y 2005 Chem. Phys. Lett. 415 291
[9] O Toole L, Brint P, Kosmidis C, Boulakis G, Tsekeris P 1991 J. Chem. Soc., Faraday Trans. 87 3343
[10] Loo R O, Hall G E, Houston P L 1989 J. Chem. Phys. 90 4222
[11] Zou P, McGivern W S, North S W 2000 Phys. Chem. Chem. Phys. 2 3785
[12] Wei Z, Zhang F, Wang Y, Zhang B 2007 Chin. J. Chem. Phys. 20 419
[13] Zhang R R, Qin C C, Long J Y, Yang M H, Zhang B 2012 Acta Phys.-Chim. Sin. 28 522
[14] Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chinese Universities 27 508
[15] Shen L, Zhang B, Suits A G 2010 J. Phys. Chem. A 114 3114
[16] Traeger J C 1985 Org. Mass Spectrom. 20 223
[17] Traeger J C, McLouglin R G, Nicholson A J C 1982 J. Am. Chem. Soc. 104 5318
[18] Owrutsky J C, Baronavski A P 1998 J. Chem. Phys. 108 6652
[19] Mordaunt D H, Osborn D L, Neumark D M 1998 J. Chem. Phys. 108 2448
[20] Shibata T, Li H Y, Katayanagi H, Suzuki T 1998 J. Phys. Chem. A 102 3643
[21] Deshmukh S, Myers J D, Xantheas S S, Hess W P 1994 J. Phys. Chem. 98 12535
[22] Kroger P M, Riley S J 1977 J. Chem. Phys. 67 4483
-
[1] Vacher J R, Jorand F, Blin-Simiand N, Pasquiers S 2008 Int. J. Mass Spectrom. 273 117
[2] Mu Y, Mellouki A 2000 J. Photochem. Photobiol. A 134 31
[3] Haas Y 2004 Photochem. Photobiol. Sci. 3 6
[4] Noyes W A, Porter G B, Jolley J E 1956 Chem. Rev. 56 49
[5] Diau E W G, Kötting C, Zewail A H 2003 Chem. Phys. Lett. 380 411
[6] Chen W K, Ho J W, Cheng P Y 2005 J. Phys. Chem. A 109 6805
[7] Chen W K, Cheng P Y 2005 J. Phys. Chem. A 109 6818
[8] Chen W K, Ho J W, Cheng P Y 2005 Chem. Phys. Lett. 415 291
[9] O Toole L, Brint P, Kosmidis C, Boulakis G, Tsekeris P 1991 J. Chem. Soc., Faraday Trans. 87 3343
[10] Loo R O, Hall G E, Houston P L 1989 J. Chem. Phys. 90 4222
[11] Zou P, McGivern W S, North S W 2000 Phys. Chem. Chem. Phys. 2 3785
[12] Wei Z, Zhang F, Wang Y, Zhang B 2007 Chin. J. Chem. Phys. 20 419
[13] Zhang R R, Qin C C, Long J Y, Yang M H, Zhang B 2012 Acta Phys.-Chim. Sin. 28 522
[14] Sun C K, Hu Z, Yang X, Jin M X, Hu W C, Ding D J 2011 Chem. Res. Chinese Universities 27 508
[15] Shen L, Zhang B, Suits A G 2010 J. Phys. Chem. A 114 3114
[16] Traeger J C 1985 Org. Mass Spectrom. 20 223
[17] Traeger J C, McLouglin R G, Nicholson A J C 1982 J. Am. Chem. Soc. 104 5318
[18] Owrutsky J C, Baronavski A P 1998 J. Chem. Phys. 108 6652
[19] Mordaunt D H, Osborn D L, Neumark D M 1998 J. Chem. Phys. 108 2448
[20] Shibata T, Li H Y, Katayanagi H, Suzuki T 1998 J. Phys. Chem. A 102 3643
[21] Deshmukh S, Myers J D, Xantheas S S, Hess W P 1994 J. Phys. Chem. 98 12535
[22] Kroger P M, Riley S J 1977 J. Chem. Phys. 67 4483
引用本文: |
Citation: |
计量
- 文章访问数: 1541
- PDF下载量: 265
- 被引次数: 0