搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环绕空气孔结构的双模大模场面积多芯光纤的特性分析

靳文星 任国斌 裴丽 姜有超 吴越 谌亚 杨宇光 任文华 简水生

环绕空气孔结构的双模大模场面积多芯光纤的特性分析

靳文星, 任国斌, 裴丽, 姜有超, 吴越, 谌亚, 杨宇光, 任文华, 简水生
PDF
导出引用
导出核心图
  • 将多芯光纤与无芯空气孔结构结合,设计了一种具有大模场面积的十九芯双模光纤结构.该结构由位于中心的5根常规纤芯及环绕其周围的14根空气纤芯按正六边形排布构成,能实现稳定的双模传输,其基模有效模场面积的最小值约为285.10 μm2.系统地分析了影响模式传输特性和模式有效模场面积的结构参数:纤芯间距、相对折射率差和纤芯大小.通过对这三个参数的优化,在双模传输的条件下,增大基模的有效模场面积.此外,具有大模场面积的多芯双模光纤结构具有良好的抗弯曲特性,基模弯曲损耗小于5×10-5dB/m.该结构还具有制作简单、设计灵活等优点,适用于高功率光纤激光器和光纤放大器.
      通信作者: 靳文星, 13111011@bjtu.edu.cn
    • 基金项目: 国家杰出青年科学基金(批准号:61525501)和国家自然科学基金(批准号:61178008,61275092,61405008)资助的课题.
    [1]

    Essiambre R J, Ryf R, Fontaine N K, Randel S 2013 IEEE Photonics. J. 5 0701307

    [2]

    Winzer P J 2012 IEEE Photonics. J. 4 647

    [3]

    Winzer P J 2014 Nat. Photon. 8 345

    [4]

    Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H 2011 J. Lightwave Technol. 29 578

    [5]

    Houtsma V, Veen D V, Chow H 2016 J. Lightwave Technol. 34 2005

    [6]

    Li F, Yu J, Cao Z, Chen M, Zhang J, Li X 2016 Opt. Express 24 2648

    [7]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photon. 7 354

    [8]

    Li G, Bai N, Zhao N, Xia C 2014 Adv. Opt. Photon. 6 413

    [9]

    Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C, Li G, Schlzgen A, Waardt H D, Koonen A M J, Okonkwo C M 2014 Nat. Photon. 8 865

    [10]

    Saitoh K, Matsuo S 2013 J. Nanophotonics. 2 441

    [11]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2013 J. Lightwave Technol. 31 554

    [12]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Luis R S, Awaji Y, Wada N, Hayashi T, Nakanish T, Watanabe T, Kokubun Y, Takahata T, Kobayashi T 2016 J. Lightwave Technol. 34 93

    [13]

    Kong F, Saitoh K, Mcclane D, Hawkins T, Foy P, Gu G, Dong L 2012 Opt. Express 20 26363

    [14]

    Li S H, Wang J 2015 Opt. Express 23 18736

    [15]

    Napierala M, Beres P E, Nasilowski T, Mergo P, Berghmans F, Thienpont H 2012 IEEE Photon. Technol. Lett. 24 1409

    [16]

    Masahiro K, Kunimasa S, Katsuhiro T, Shoji T, Shoichiro M, Munehisa F 2012 Opt. Express 20 15061

    [17]

    Chen M Y, Li Y R, Zhou J, Zhang Y K 2013 J. Lightwave Technol. 31 476

    [18]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521

    [19]

    Zheng S W, Ren G B, Lin Z, Jian W, Jian S S 2013 Opt. Fiber. Technol. 19 419

    [20]

    Lin Z, Ren G B, Zheng S W, Jian S S 2013 Opt. Laser. Technol. 51 11

    [21]

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224 (in Chinese)[郑斯文, 林桢, 任国斌, 简水生2013物理学报62 044224]

    [22]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese)[林桢, 郑斯文, 任国斌, 简水生2013物理学报62 064214]

    [23]

    Vogel M M, AbdouA M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [24]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London:Chapman and Hall Ltd) p7

    [25]

    Ren G B, Lin Z, Zheng S W, Jian S S 2013 Opt. Lett. 38 781

  • [1]

    Essiambre R J, Ryf R, Fontaine N K, Randel S 2013 IEEE Photonics. J. 5 0701307

    [2]

    Winzer P J 2012 IEEE Photonics. J. 4 647

    [3]

    Winzer P J 2014 Nat. Photon. 8 345

    [4]

    Sano A, Masuda H, Kobayashi T, Fujiwara M, Horikoshi K, Yoshida E, Miyamoto Y, Matsui M, Mizoguchi M, Yamazaki H, Sakamaki Y, Ishii H 2011 J. Lightwave Technol. 29 578

    [5]

    Houtsma V, Veen D V, Chow H 2016 J. Lightwave Technol. 34 2005

    [6]

    Li F, Yu J, Cao Z, Chen M, Zhang J, Li X 2016 Opt. Express 24 2648

    [7]

    Richardson D J, Fini J M, Nelson L E 2013 Nat. Photon. 7 354

    [8]

    Li G, Bai N, Zhao N, Xia C 2014 Adv. Opt. Photon. 6 413

    [9]

    Van Uden R G H, Correa R A, Lopez E A, Huijskens F M, Xia C, Li G, Schlzgen A, Waardt H D, Koonen A M J, Okonkwo C M 2014 Nat. Photon. 8 865

    [10]

    Saitoh K, Matsuo S 2013 J. Nanophotonics. 2 441

    [11]

    Sakaguchi J, Puttnam B J, Klaus W, Awaji Y, Wada N, Kanno A, Kawanishi T, Imamura K, Inaba H, Mukasa K, Sugizaki R, Kobayashi T, Watanabe M 2013 J. Lightwave Technol. 31 554

    [12]

    Sakaguchi J, Klaus W, Mendinueta J M D, Puttnam B J, Luis R S, Awaji Y, Wada N, Hayashi T, Nakanish T, Watanabe T, Kokubun Y, Takahata T, Kobayashi T 2016 J. Lightwave Technol. 34 93

    [13]

    Kong F, Saitoh K, Mcclane D, Hawkins T, Foy P, Gu G, Dong L 2012 Opt. Express 20 26363

    [14]

    Li S H, Wang J 2015 Opt. Express 23 18736

    [15]

    Napierala M, Beres P E, Nasilowski T, Mergo P, Berghmans F, Thienpont H 2012 IEEE Photon. Technol. Lett. 24 1409

    [16]

    Masahiro K, Kunimasa S, Katsuhiro T, Shoji T, Shoichiro M, Munehisa F 2012 Opt. Express 20 15061

    [17]

    Chen M Y, Li Y R, Zhou J, Zhang Y K 2013 J. Lightwave Technol. 31 476

    [18]

    Ryf R, Randel S, Gnauck A H, Bolle C, Sierra A, Mumtaz S, Esmaeelpour M, Burrows E C, Essiambre R J, Winzer P J, Peckham D W, McCurdy A H, Lingle R 2012 J. Lightwave Technol. 30 521

    [19]

    Zheng S W, Ren G B, Lin Z, Jian W, Jian S S 2013 Opt. Fiber. Technol. 19 419

    [20]

    Lin Z, Ren G B, Zheng S W, Jian S S 2013 Opt. Laser. Technol. 51 11

    [21]

    Zheng S W, Lin Z, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 044224 (in Chinese)[郑斯文, 林桢, 任国斌, 简水生2013物理学报62 044224]

    [22]

    Lin Z, Zheng S W, Ren G B, Jian S S 2013 Acta Phys. Sin. 62 064214 (in Chinese)[林桢, 郑斯文, 任国斌, 简水生2013物理学报62 064214]

    [23]

    Vogel M M, AbdouA M, Voss A, Graf T 2009 Opt. Lett. 34 2876

    [24]

    Snyder A W, Love J D 1983 Optical Waveguide Theory (London:Chapman and Hall Ltd) p7

    [25]

    Ren G B, Lin Z, Zheng S W, Jian S S 2013 Opt. Lett. 38 781

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1673
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-27
  • 修回日期:  2016-10-25
  • 刊出日期:  2017-01-20

环绕空气孔结构的双模大模场面积多芯光纤的特性分析

  • 1. 北京交通大学, 全光网络与现代通信网教育部重点实验室, 北京 100044;北京交通大学光波技术研究所, 北京 100044
  • 通信作者: 靳文星, 13111011@bjtu.edu.cn
    基金项目: 

    国家杰出青年科学基金(批准号:61525501)和国家自然科学基金(批准号:61178008,61275092,61405008)资助的课题.

摘要: 将多芯光纤与无芯空气孔结构结合,设计了一种具有大模场面积的十九芯双模光纤结构.该结构由位于中心的5根常规纤芯及环绕其周围的14根空气纤芯按正六边形排布构成,能实现稳定的双模传输,其基模有效模场面积的最小值约为285.10 μm2.系统地分析了影响模式传输特性和模式有效模场面积的结构参数:纤芯间距、相对折射率差和纤芯大小.通过对这三个参数的优化,在双模传输的条件下,增大基模的有效模场面积.此外,具有大模场面积的多芯双模光纤结构具有良好的抗弯曲特性,基模弯曲损耗小于5×10-5dB/m.该结构还具有制作简单、设计灵活等优点,适用于高功率光纤激光器和光纤放大器.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回