搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压调控的磁性量子临界点和非常规超导电性

程金光

高压调控的磁性量子临界点和非常规超导电性

程金光
PDF
导出引用
导出核心图
  • 通过化学掺杂或者施加高压等调控手段抑制长程磁有序可以实现磁性量子临界点,在其附近往往伴随出现诸如非费米液体行为或者非常规超导电性等奇特物理现象.相比于化学掺杂,高压调控具有不引入晶格无序和精细调控等优点.利用能提供良好静水压环境的立方六面砧和活塞-圆筒高压低温测量装置,首先系统研究了具有双螺旋磁有序结构的CrAs和MnP单晶的高压电输运行为,分别在Pc0.8 GPa和8 GPa实现了它们的磁性量子临界点,并在Pc附近分别观察到Tc=2 K和1 K的超导电性,相继实现了铬基和锰基化合物超导体零的突破;然后,详细测量了FeSe单晶高压下的电阻率和交流磁化率,绘制了详尽的温度-压力相图,揭示了电子向列序、长程反铁磁序和超导相之间的相互竞争关系,特别是在接近磁有序消失的临界点Pc6 GPa附近观察到Tcmax=38.5 K的高温超导电性,表明临界反铁磁涨落对FeSe中的高温超导电性起重要作用.
      通信作者: 程金光, jgcheng@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11574377)、国家重点基础研究发展计划(批准号:2014CB921500)和中国科学院先导B项目(批准号:XDB07020100)资助的课题.
    [1]

    Coleman P, Schofield A J 2005 Nature 433 226

    [2]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [3]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [4]

    Norman M R 2011 Science 332 196

    [5]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177

    [6]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [7]

    Lohneysen H V, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015

    [8]

    Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C, Luke G M 2009 Phys. Rev. B 79 020511

    [9]

    Matsubayashi K, Terai T, Zhou J S, Uwatoko Y 2014 Rhys. Rev. B 90 125126

    [10]

    Wang B S, Matsubayashi K, Cheng J G, Terashima T, Kihou K, Ishida S, Lee C H, Iyo A, Eisaki H, Uwatoko Y 2016 Phys. Rev. B 94 020502

    [11]

    Uwatoko Y 2002 Rev. High Pressure Sci. Technol. 12 306

    [12]

    Mori N, Takahashi H, Takeshita N 2004 High Pressure Res. 24 225

    [13]

    Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907

    [14]

    Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615

    [15]

    Rotundu C R, Cuk T, Greene R L, Shen Z X, Hemley R J, Struzhkin V V 2013 Rev. Sci. Instrum. 84 063903

    [16]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508

    [17]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001

    [18]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [19]

    Mori N, Takahashi H, Miyane Y 1990 Kotai Butsuri 25 185

    [20]

    Uwatoko Y, Matsubayashi K, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, Kagi H 2008 Rev. High Pressure Sci. Technol. 18 230

    [21]

    Matsubayashi K, Hisada A, Kawae T, Uwatoko Y 2012 Rev. High Pressure Sci. Technol. 22 206

    [22]

    Boller H, Kallel A 1971 Solid State Commun. 9 1699

    [23]

    Selte K, Kjekshus A, Jamison W E, Andresen A, Engebretsen J E 1971 Acta Chem. Scand. 25 1703

    [24]

    Watanabe H, Kazama N, Yamaguichi Y, Ohashi M 1969 J. Appl. Phys. 40 1128

    [25]

    Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L, Luo J L 2010 Sci. China:Phys. Mech. Astron. 53 1207

    [26]

    Zavadskii E A, Sibarova I A 1980 Sov. Phys. JETP 51 542

    [27]

    Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, Harima H 2015 Phys. Rev. Lett. 114 117002

    [28]

    Ito T, Ido H, Motizuki K 2007 J. Magn. Magn. Mater. 310 558

    [29]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [30]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [31]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China:Mater. 58 16

    [32]

    Huber E E J, Ridgley H D 1964 Phys. Rev. 135 A1033

    [33]

    Felcher G P 1966 J. Appl. Phys. 37 1056

    [34]

    Takase A, Kasuya T 1980 J. Phys. Soc. Jpn. 48 430

    [35]

    Banus M D 1972 J. Solid State Chem. 4 391

    [36]

    Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, Uwatoko Y 2016 Phys. Rev. B 93 100405

    [37]

    Fan G Z, Zhao B, Wu W, Zheng P, Luo J L 2016 Sci. China:Phys. Mech. Astron. 59 657403

    [38]

    Khasanov R, Amato A, Bonfa P, Guguchia Z, Luetkens H, Morenzoni E, de Renzi R, Zhigadlo N D 2016 Phys. Rev. B 93 180509

    [39]

    Wang Y S, Feng Y J, Cheng J G, Wu W, Luo J L, Rosenbaum T F 2016 Nat. Commun. 7 13037

    [40]

    Yanase A, Hasegawa A 1980 J. Phys. C 13 1989

    [41]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [42]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [43]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [44]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [45]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [46]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [47]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15

    [48]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [49]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2014 Nat. Mater. 14 285

    [52]

    Liu X, Zhao L, He S L, He J F, Liu D F, Mou D X, Shen B, Hu Y, Huang J W, Zhou X J 2015 J. Phys.:Condens. Mater. 27 183201

    [53]

    Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003

    [54]

    Bendele M, Ichsanow A, Pashkeich Yu, Keller L, Strassle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517

    [55]

    Terashiam T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T, Matsuda Y, Wolf T, Bohmer A E, Hardy F, Meingast C, Lohneysen H V, Uji S 2015 J. Phys. Soc. Jpn. 84 063701

  • [1]

    Coleman P, Schofield A J 2005 Nature 433 226

    [2]

    Sachdev S, Keimer B 2011 Phys. Today 64 29

    [3]

    Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W, Lonzarich G G 1998 Nature 394 39

    [4]

    Norman M R 2011 Science 332 196

    [5]

    Monthoux P, Pines D, Lonzarich G G 2007 Nature 450 1177

    [6]

    Gegenwart P, Si Q, Steglich F 2008 Nat. Phys. 4 186

    [7]

    Lohneysen H V, Rosch A, Vojta M, Wölfle P 2007 Rev. Mod. Phys. 79 1015

    [8]

    Yu W, Aczel A A, Williams T J, Bud'ko S L, Ni N, Canfield P C, Luke G M 2009 Phys. Rev. B 79 020511

    [9]

    Matsubayashi K, Terai T, Zhou J S, Uwatoko Y 2014 Rhys. Rev. B 90 125126

    [10]

    Wang B S, Matsubayashi K, Cheng J G, Terashima T, Kihou K, Ishida S, Lee C H, Iyo A, Eisaki H, Uwatoko Y 2016 Phys. Rev. B 94 020502

    [11]

    Uwatoko Y 2002 Rev. High Pressure Sci. Technol. 12 306

    [12]

    Mori N, Takahashi H, Takeshita N 2004 High Pressure Res. 24 225

    [13]

    Cheng J G, Matsubayashi K, Nagasaki S, Hisada A, Hirayama T, Hedo M, Kagi H, Uwatoko Y 2014 Rev. Sci. Instrum. 85 093907

    [14]

    Mao H K, Bell P M 1981 Rev. Sci. Instrum. 52 615

    [15]

    Rotundu C R, Cuk T, Greene R L, Shen Z X, Hemley R J, Struzhkin V V 2013 Rev. Sci. Instrum. 84 063903

    [16]

    Wu W, Cheng J G, Matsubayashi K, Kong P P, Lin F K, Jin C Q, Wang N L, Uwatoko Y, Luo J L 2014 Nat. Commun. 5 5508

    [17]

    Cheng J G, Matsubayashi K, Wu W, Sun J P, Lin F K, Luo J L, Uwatoko Y 2015 Phys. Rev. Lett. 114 117001

    [18]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [19]

    Mori N, Takahashi H, Miyane Y 1990 Kotai Butsuri 25 185

    [20]

    Uwatoko Y, Matsubayashi K, Aso N, Nishi M, Fujiwara T, Hedo M, Tabata S, Takagi K, Tado M, Kagi H 2008 Rev. High Pressure Sci. Technol. 18 230

    [21]

    Matsubayashi K, Hisada A, Kawae T, Uwatoko Y 2012 Rev. High Pressure Sci. Technol. 22 206

    [22]

    Boller H, Kallel A 1971 Solid State Commun. 9 1699

    [23]

    Selte K, Kjekshus A, Jamison W E, Andresen A, Engebretsen J E 1971 Acta Chem. Scand. 25 1703

    [24]

    Watanabe H, Kazama N, Yamaguichi Y, Ohashi M 1969 J. Appl. Phys. 40 1128

    [25]

    Wu W, Zhang X D, Yin Z H, Zheng P, Wang N L, Luo J L 2010 Sci. China:Phys. Mech. Astron. 53 1207

    [26]

    Zavadskii E A, Sibarova I A 1980 Sov. Phys. JETP 51 542

    [27]

    Kotegawa H, Nakahara S, Akamatsu R, Tou H, Sugawara H, Harima H 2015 Phys. Rev. Lett. 114 117002

    [28]

    Ito T, Ido H, Motizuki K 2007 J. Magn. Magn. Mater. 310 558

    [29]

    Bao J K, Liu J Y, Ma C W, Meng Z H, Tang Z T, Sun Y L, Zhai H F, Jiang H, Bai H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. X 5 011013

    [30]

    Tang Z T, Bao J K, Liu Y, Sun Y L, Ablimit A, Zhai H F, Jiang H, Feng C M, Xu Z A, Cao G H 2015 Phys. Rev. B 91 020506

    [31]

    Tang Z T, Bao J K, Wang Z, Bai H, Jiang H, Liu Y, Zhai H F, Feng C M, Xu Z A, Cao G H 2015 Sci. China:Mater. 58 16

    [32]

    Huber E E J, Ridgley H D 1964 Phys. Rev. 135 A1033

    [33]

    Felcher G P 1966 J. Appl. Phys. 37 1056

    [34]

    Takase A, Kasuya T 1980 J. Phys. Soc. Jpn. 48 430

    [35]

    Banus M D 1972 J. Solid State Chem. 4 391

    [36]

    Matsuda M, Ye F, Dissanayake S E, Cheng J G, Chi S, Ma J, Zhou H D, Yan J Q, Kasamatsu S, Sugino O, Kato T, Matsubayashi K, Okada T, Uwatoko Y 2016 Phys. Rev. B 93 100405

    [37]

    Fan G Z, Zhao B, Wu W, Zheng P, Luo J L 2016 Sci. China:Phys. Mech. Astron. 59 657403

    [38]

    Khasanov R, Amato A, Bonfa P, Guguchia Z, Luetkens H, Morenzoni E, de Renzi R, Zhigadlo N D 2016 Phys. Rev. B 93 180509

    [39]

    Wang Y S, Feng Y J, Cheng J G, Wu W, Luo J L, Rosenbaum T F 2016 Nat. Commun. 7 13037

    [40]

    Yanase A, Hasegawa A 1980 J. Phys. C 13 1989

    [41]

    Davis J C, Lee D H 2013 Proc. Natl. Acad. Sci. USA 110 17623

    [42]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [43]

    Imai T, Ahilan K, Ning F L, McQueen T M, Cava R J 2009 Phys. Rev. Lett. 102 177005

    [44]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [45]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [46]

    Guo J G, Jin S F, Wang G, Wang S C, Zhu K X, Zhou T T, He M, Chen X L 2010 Phys. Rev. B 82 180520

    [47]

    Burrard-Lucas M, Free D G, Sedlmaier S J, Wright J D, Cassidy S J, Hara Y, Corkett A J, Lancaster T, Baker P J, Blundell S J, Clarke S J 2012 Nat. Mater. 12 15

    [48]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [49]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [50]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [51]

    Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2014 Nat. Mater. 14 285

    [52]

    Liu X, Zhao L, He S L, He J F, Liu D F, Mou D X, Shen B, Hu Y, Huang J W, Zhou X J 2015 J. Phys.:Condens. Mater. 27 183201

    [53]

    Bendele M, Amato A, Conder K, Elender M, Keller H, Klauss H H, Luetkens H, Pomjakushina E, Raselli A, Khasanov R 2010 Phys. Rev. Lett. 104 087003

    [54]

    Bendele M, Ichsanow A, Pashkeich Yu, Keller L, Strassle T, Gusev A, Pomjakushina E, Conder K, Khasanov R, Keller H 2012 Phys. Rev. B 85 064517

    [55]

    Terashiam T, Kikugawa N, Kasahara S, Watashige T, Shibauchi T, Matsuda Y, Wolf T, Bohmer A E, Hardy F, Meingast C, Lohneysen H V, Uji S 2015 J. Phys. Soc. Jpn. 84 063701

  • [1] 孙建平, Prashant Shahi, 周花雪, 倪顺利, 王少华, 雷和畅, 王铂森, 董晓莉, 赵忠贤, 程金光. 插层FeSe高温超导体的高压研究进展. 物理学报, 2018, 67(20): 207404. doi: 10.7498/aps.67.20181319
    [2] 谢武, 沈斌, 张勇军, 郭春煜, 许嘉诚, 路欣, 袁辉球. 重费米子材料与物理. 物理学报, 2019, 68(17): 177101. doi: 10.7498/aps.68.20190801
    [3] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [4] 欧发, 邓文基. 光学双稳性临界点的相变行为. 物理学报, 1990, 39(6): 90-97. doi: 10.7498/aps.39.90
    [5] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [6] 邵元智, 蓝图, 林光明. 三维动态Ising模型中的非平衡相变:三临界点的存在. 物理学报, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [7] 俞建宁, 张永祥, 孔贵芹. 振动筛系统的两类余维三分岔与非常规混沌演化. 物理学报, 2008, 57(10): 6182-6187. doi: 10.7498/aps.57.6182
    [8] 李宏, 张斯淇, 郭明, 李美萱, 宋立军. Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞. 物理学报, 2019, 68(12): 124203. doi: 10.7498/aps.68.20190154
    [9] 郑瑞伦, 胡先权. 非简谐振动对液氩的临界点与玻意耳线的影响. 物理学报, 1994, 43(8): 1254-1261. doi: 10.7498/aps.43.1254
    [10] 王治国, 许伯威. Ashkin-Teller量子链的玻色化形式及其新的临界点. 物理学报, 1997, 46(5): 841-845. doi: 10.7498/aps.46.841
    [11] 陈洪, 郑瑞伦. 量子Heisenberg薄膜临界点的变分累积展开研究. 物理学报, 2000, 49(2): 293-296. doi: 10.7498/aps.49.293
    [12] 李政, 周睿, 郑国庆. 铁基超导体的量子临界行为. 物理学报, 2015, 64(21): 217404. doi: 10.7498/aps.64.217404
    [13] 陈式刚. 连续相变临界点处的分形结构. 物理学报, 1991, 40(4): 584-587. doi: 10.7498/aps.40.584
    [14] 曹天德, 陈 敏, 王 庆. 杂质引起的非费密液体行为. 物理学报, 2000, 49(11): 2261-2263. doi: 10.7498/aps.49.2261
    [15] 张盼君, 孙慧卿, 郭志友, 王度阳, 谢晓宇, 蔡金鑫, 郑欢, 谢楠, 杨斌. 含有量子点的双波长LED的光谱调控. 物理学报, 2013, 62(11): 117304. doi: 10.7498/aps.62.117304
    [16] 刘志毅, 赵有祥, 刘振兴, 陈桂玉, 王朝果, 王守证. 低温高压及高温高压对La80Al20非晶态结构及超导性的影响. 物理学报, 1983, 32(3): 354-359. doi: 10.7498/aps.32.354
    [17] 张绍忠. 高压力下液体之比电容. 物理学报, 1934, 2(2): 1-55. doi: 10.7498/aps.1.1
    [18] 罗奔毅, 卢义刚. 超临界点附近二氧化碳流体的声速. 物理学报, 2008, 57(7): 4397-4401. doi: 10.7498/aps.57.4397
    [19] 熊国明, 郑瑞伦, 赵福川. 对确定Ising自旋系统临界点自洽集团方法的改进. 物理学报, 1997, 46(4): 724-731. doi: 10.7498/aps.46.724
    [20] 张振俊, 李文娟, 朱璇, 熊烨, 童培庆. 横场中非束缚类准周期伊辛链的赝临界点. 物理学报, 2015, 64(19): 190501. doi: 10.7498/aps.64.190501
  • 引用本文:
    Citation:
计量
  • 文章访问数:  601
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-02
  • 修回日期:  2016-11-19
  • 刊出日期:  2017-02-05

高压调控的磁性量子临界点和非常规超导电性

  • 1. 中国科学院物理研究所, 极端条件物理重点实验室, 北京 100190
  • 通信作者: 程金光, jgcheng@iphy.ac.cn
    基金项目: 

    国家自然科学基金(批准号:11574377)、国家重点基础研究发展计划(批准号:2014CB921500)和中国科学院先导B项目(批准号:XDB07020100)资助的课题.

摘要: 通过化学掺杂或者施加高压等调控手段抑制长程磁有序可以实现磁性量子临界点,在其附近往往伴随出现诸如非费米液体行为或者非常规超导电性等奇特物理现象.相比于化学掺杂,高压调控具有不引入晶格无序和精细调控等优点.利用能提供良好静水压环境的立方六面砧和活塞-圆筒高压低温测量装置,首先系统研究了具有双螺旋磁有序结构的CrAs和MnP单晶的高压电输运行为,分别在Pc0.8 GPa和8 GPa实现了它们的磁性量子临界点,并在Pc附近分别观察到Tc=2 K和1 K的超导电性,相继实现了铬基和锰基化合物超导体零的突破;然后,详细测量了FeSe单晶高压下的电阻率和交流磁化率,绘制了详尽的温度-压力相图,揭示了电子向列序、长程反铁磁序和超导相之间的相互竞争关系,特别是在接近磁有序消失的临界点Pc6 GPa附近观察到Tcmax=38.5 K的高温超导电性,表明临界反铁磁涨落对FeSe中的高温超导电性起重要作用.

English Abstract

参考文献 (55)

目录

    /

    返回文章
    返回