搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分离压和表面黏度的协同作用对液膜排液过程的影响

叶学民 杨少东 李春曦

分离压和表面黏度的协同作用对液膜排液过程的影响

叶学民, 杨少东, 李春曦
PDF
导出引用
导出核心图
  • 针对含不溶性活性剂的垂直液膜排液过程,在考虑分离压作用的前提下,引入随活性剂浓度变化的表面黏度模型,应用润滑理论建立了液膜厚度、活性剂浓度和液膜表面速度的演化方程组,通过数值计算分析了常表面黏度和变表面黏度情形下的液膜演化特征.结果表明:表面黏度是影响液膜排液过程的重要因素,当不考虑表面黏度时,液膜表面呈流动模式,反之呈刚性模式,且随表面黏度增加,液膜排液速率明显减缓.分离压对黑膜的形成至关重要,分离压单独作用时,其形成的黑膜长度较短,而只考虑表面黏度时,则不能形成稳定的黑膜.而在二者协同作用下,液膜中部形成了向下扩展、厚度很薄但非常稳定的黑膜,且黑膜厚度、出现时间均随表面黏度的增大而增加.当考虑活性剂浓度对表面黏度的影响时,表面速度受此影响显著;在形成黑膜长度及出现时间方面与相应常表面黏度的情形基本类似,但其黑膜厚度小于相应常表面黏度,故在液膜排液过程中更容易发生失稳.
      通信作者: 李春曦, leechunxi@163.com
    • 基金项目: 国家自然科学基金(批准号:11202079)和中央高校基本科研业务费专项资金(批准号:13MS97)资助的课题.
    [1]

    Huang J, Sun Q C 2007 Acta Phys. Sin. 56 6124 (in Chinese)[黄晋, 孙其诚 2007 物理学报 56 6124]

    [2]

    Bournival G, Du Z, Ata S, Jameson G J 2014 Chem. Eng. Sci. 116 536

    [3]

    Firouzi M, Nguyen A V 2014 Adv. Powder Technol. 25 1212

    [4]

    Jun S, Pelot D D, Yarin A L 2012 Langmuir 28 5323

    [5]

    Anazadehsayed A, Naser J 2017 Chem. Eng. Sci. 166 11

    [6]

    Mysels K J, Shinoda K, Frankel S 1959 Soap Films:Studies of Their Thinning and a Bibilography (New York:Pergammon) p116

    [7]

    Wang J, Nguyen A V, Farrokhpay S 2016 Adv. Colloid Interfac. 228 55

    [8]

    Benjamin Dollet, Isabelle Cantat 2014 J. Fluid Mech. 739 124

    [9]

    Zang D Y, Rio E, Langevin D, Wei B, Binks B P 2010 Eur. Phys. J. E 31 125

    [10]

    Schwartz L W, Roy R V 1999 J. Colloid Interface Sci. 218 309

    [11]

    Carey E, Stubenrauch C 2010 J. Colloid Interface Sci. 343 314

    [12]

    Tabakova S S, Danov K D 2009 J. Colloid Interface Sci. 336 273

    [13]

    Matar O K 2002 Phys. Fluids 14 4216

    [14]

    Boussinesq J 1913 Ann. Chim. Phys. 29 349

    [15]

    Li T M, Jia S Y 1995 CIESC J. 5 532 (in Chinese)[李佟茗, 贾绍义 1995 化工学报 5 532]

    [16]

    Naire S, Braun R J, Snow S A 2000 J. Colloid Interface Sci. 230 91

    [17]

    Naire S, Braun R J, Snow S A 2004 J. Comput. Appl. Math. 166 385

    [18]

    Naire S, Braun R J, Snow S A 2001 Phys. Fluids 13 2492

    [19]

    Heidari A H, Braun R J, Hirsa A H, Snow S A, Naire S 2002 J. Colloid Interface Sci. 253 295

    [20]

    Snow S A, Pernisz U C, Nugent B M 1996 Dow Corning Corporation Research Report 1996-I0000-41395

    [21]

    Lopez J M, Hirsa A H 2000 J. Colloid Interface Sci. 229 575

    [22]

    Vitasari D, Grassia P, Martin P 2015 Appl. Math. Model. 40 1941

    [23]

    Elfring G J, Leal L G, Squires T M 2016 J. Fluid Mech. 792 712

    [24]

    Yekeen N, Idris A K, Manan M A, Samin A M, Risal A R, Tan X K 2017 Chin. J. Chem. Eng. 25 347

    [25]

    Han G B, Wu J T, Xu X M 2000 Acta Phys. Chim. Sin. 16 507 (in Chinese)[韩国彬, 吴金添, 徐晓明 2000 物理化学学报 16 507]

    [26]

    Gauchet S, Durand M, Langevin D 2014 J. Colloid Interface Sci. 449 373

    [27]

    Saulnier L, Champougny L, Bastien G, Restagno F, Langevin D, Rio E 2014 Soft Matter 10 2899

    [28]

    Sett S, Sinha-Ray S, Yarin A L 2013 Langmuir 29 4934

    [29]

    Zang D Y, Rio E, Delon G, Langevin D, Wei B, Binks B P 2011 Mol. Phys. 109 1057

    [30]

    Pu W, Wei P, Sun L, Jin F Y, Wang S 2016 J. Ind. Eng. Chem. 47 360

    [31]

    Zhang C R 2007 Ph. D. Dissertation (Beijing:Technical Institute of Physical and Chemistry of Chinese Academy of Sciences) (in Chinese)[张春荣 2007 博士学位论文 (北京:中国科学院理化技术研究所)]

    [32]

    Tian Y, Holt R G, Apfel R E 1997 J. Colloid Interface Sci. 87 1

    [33]

    Avramidis K S, Jiang T S 1991 J. Colloid Interface Sci. 147 262

    [34]

    Murai Y, Shiratori T, Kumagai I, Rhs P A, Fischer P 2015 Flow Meas. Instrum. 41 121

    [35]

    Ivanov I B, Danov K D, Ananthapadmanabhan K P, Lips A 2005 Adv. Colloid Interfac. 114-115 61

    [36]

    Manor O, Lavrenteva O, Nir A 2008 J. Colloid Interface Sci. 321 142

    [37]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing:Science Press) pp185, 186 (in Chinese)[赵亚溥 2012 表面与界面物理力学 (北京:科学出版社) 第185, 186页]

    [38]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 214704 (in Chinese)[李春曦, 裴建军, 叶学民 2013 物理学报 62 214704]

    [39]

    de Wit A, Gallez D, Christov C I 1994 Phys. Fluids 6 3256

    [40]

    Sakata E K, Berg J C 1972 J. Colloid Interface Sci. 40 99

    [41]

    Saulnier L, Boos J, Stubenrauch C, Rio E 2014 Soft Matter 10 7117

    [42]

    Lu K Q, Liu J X 2007 Introduction of Soft Matter Physics (Beijing:Peking University Press) pp278, 279 (in Chinese)[陆坤权, 刘寄星 2007 软物质物理学导论 (北京大学出版社) 第278, 279页]

    [43]

    Braun R J, Snow S A, Naire S 2002 J. Eng. Math. 43 281

    [44]

    Karakashev S I, Nguyen A V 2007 Colloid Surface A 293 229

    [45]

    Ivanov I B, Dimitrov D S 1974 Colloid Polym. Sci. 252 98

  • [1]

    Huang J, Sun Q C 2007 Acta Phys. Sin. 56 6124 (in Chinese)[黄晋, 孙其诚 2007 物理学报 56 6124]

    [2]

    Bournival G, Du Z, Ata S, Jameson G J 2014 Chem. Eng. Sci. 116 536

    [3]

    Firouzi M, Nguyen A V 2014 Adv. Powder Technol. 25 1212

    [4]

    Jun S, Pelot D D, Yarin A L 2012 Langmuir 28 5323

    [5]

    Anazadehsayed A, Naser J 2017 Chem. Eng. Sci. 166 11

    [6]

    Mysels K J, Shinoda K, Frankel S 1959 Soap Films:Studies of Their Thinning and a Bibilography (New York:Pergammon) p116

    [7]

    Wang J, Nguyen A V, Farrokhpay S 2016 Adv. Colloid Interfac. 228 55

    [8]

    Benjamin Dollet, Isabelle Cantat 2014 J. Fluid Mech. 739 124

    [9]

    Zang D Y, Rio E, Langevin D, Wei B, Binks B P 2010 Eur. Phys. J. E 31 125

    [10]

    Schwartz L W, Roy R V 1999 J. Colloid Interface Sci. 218 309

    [11]

    Carey E, Stubenrauch C 2010 J. Colloid Interface Sci. 343 314

    [12]

    Tabakova S S, Danov K D 2009 J. Colloid Interface Sci. 336 273

    [13]

    Matar O K 2002 Phys. Fluids 14 4216

    [14]

    Boussinesq J 1913 Ann. Chim. Phys. 29 349

    [15]

    Li T M, Jia S Y 1995 CIESC J. 5 532 (in Chinese)[李佟茗, 贾绍义 1995 化工学报 5 532]

    [16]

    Naire S, Braun R J, Snow S A 2000 J. Colloid Interface Sci. 230 91

    [17]

    Naire S, Braun R J, Snow S A 2004 J. Comput. Appl. Math. 166 385

    [18]

    Naire S, Braun R J, Snow S A 2001 Phys. Fluids 13 2492

    [19]

    Heidari A H, Braun R J, Hirsa A H, Snow S A, Naire S 2002 J. Colloid Interface Sci. 253 295

    [20]

    Snow S A, Pernisz U C, Nugent B M 1996 Dow Corning Corporation Research Report 1996-I0000-41395

    [21]

    Lopez J M, Hirsa A H 2000 J. Colloid Interface Sci. 229 575

    [22]

    Vitasari D, Grassia P, Martin P 2015 Appl. Math. Model. 40 1941

    [23]

    Elfring G J, Leal L G, Squires T M 2016 J. Fluid Mech. 792 712

    [24]

    Yekeen N, Idris A K, Manan M A, Samin A M, Risal A R, Tan X K 2017 Chin. J. Chem. Eng. 25 347

    [25]

    Han G B, Wu J T, Xu X M 2000 Acta Phys. Chim. Sin. 16 507 (in Chinese)[韩国彬, 吴金添, 徐晓明 2000 物理化学学报 16 507]

    [26]

    Gauchet S, Durand M, Langevin D 2014 J. Colloid Interface Sci. 449 373

    [27]

    Saulnier L, Champougny L, Bastien G, Restagno F, Langevin D, Rio E 2014 Soft Matter 10 2899

    [28]

    Sett S, Sinha-Ray S, Yarin A L 2013 Langmuir 29 4934

    [29]

    Zang D Y, Rio E, Delon G, Langevin D, Wei B, Binks B P 2011 Mol. Phys. 109 1057

    [30]

    Pu W, Wei P, Sun L, Jin F Y, Wang S 2016 J. Ind. Eng. Chem. 47 360

    [31]

    Zhang C R 2007 Ph. D. Dissertation (Beijing:Technical Institute of Physical and Chemistry of Chinese Academy of Sciences) (in Chinese)[张春荣 2007 博士学位论文 (北京:中国科学院理化技术研究所)]

    [32]

    Tian Y, Holt R G, Apfel R E 1997 J. Colloid Interface Sci. 87 1

    [33]

    Avramidis K S, Jiang T S 1991 J. Colloid Interface Sci. 147 262

    [34]

    Murai Y, Shiratori T, Kumagai I, Rhs P A, Fischer P 2015 Flow Meas. Instrum. 41 121

    [35]

    Ivanov I B, Danov K D, Ananthapadmanabhan K P, Lips A 2005 Adv. Colloid Interfac. 114-115 61

    [36]

    Manor O, Lavrenteva O, Nir A 2008 J. Colloid Interface Sci. 321 142

    [37]

    Zhao Y P 2012 Physical Mechanics of Surface and Interface (Beijing:Science Press) pp185, 186 (in Chinese)[赵亚溥 2012 表面与界面物理力学 (北京:科学出版社) 第185, 186页]

    [38]

    Li C X, Pei J J, Ye X M 2013 Acta Phys. Sin. 62 214704 (in Chinese)[李春曦, 裴建军, 叶学民 2013 物理学报 62 214704]

    [39]

    de Wit A, Gallez D, Christov C I 1994 Phys. Fluids 6 3256

    [40]

    Sakata E K, Berg J C 1972 J. Colloid Interface Sci. 40 99

    [41]

    Saulnier L, Boos J, Stubenrauch C, Rio E 2014 Soft Matter 10 7117

    [42]

    Lu K Q, Liu J X 2007 Introduction of Soft Matter Physics (Beijing:Peking University Press) pp278, 279 (in Chinese)[陆坤权, 刘寄星 2007 软物质物理学导论 (北京大学出版社) 第278, 279页]

    [43]

    Braun R J, Snow S A, Naire S 2002 J. Eng. Math. 43 281

    [44]

    Karakashev S I, Nguyen A V 2007 Colloid Surface A 293 229

    [45]

    Ivanov I B, Dimitrov D S 1974 Colloid Polym. Sci. 252 98

  • [1] 叶学民, 李明兰, 张湘珊, 李春曦. 表面弹性和分离压耦合作用下的垂直液膜排液过程. 物理学报, 2018, 67(16): 164701. doi: 10.7498/aps.67.20180349
    [2] 叶学民, 杨少东, 李春曦. 随活性剂浓度变化的分离压对垂直液膜排液过程的影响. 物理学报, 2017, 66(18): 184702. doi: 10.7498/aps.66.184702
    [3] 李春曦, 姜凯, 叶学民. 含活性剂液膜去润湿演化的稳定性特征. 物理学报, 2013, 62(23): 234702. doi: 10.7498/aps.62.234702
    [4] 叶学民, 李明兰, 张湘珊, 李春曦. 表面弹性对含可溶性活性剂垂直液膜排液的影响. 物理学报, 2018, 67(21): 214703. doi: 10.7498/aps.67.20181020
    [5] 檀满林, 周丹丹, 符冬菊, 张维丽, 马清, 李冬霜, 陈建军, 张化宇, 王根平. 基于BiFeO3/ITO复合膜表面钝化的黑硅太阳电池性能研究. 物理学报, 2017, 66(16): 167701. doi: 10.7498/aps.66.167701
    [6] 杨世. 表面压诱导的外消旋双亲分子单层手征相分离的数学模型及其二维古典解. 物理学报, 1998, 47(10): 1673-1679. doi: 10.7498/aps.47.1673
    [7] 普小云, 柳清菊, 张中明, 林理忠. 表面单分子膜的垂悬液滴方法研究. 物理学报, 1998, 47(1): 60-67. doi: 10.7498/aps.47.60
    [8] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象. 物理学报, 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [9] 李春曦, 施智贤, 庄立宇, 叶学民. 活性剂对表面声波作用下薄液膜铺展的影响. 物理学报, 2019, 68(21): 214703. doi: 10.7498/aps.68.20190791
    [10] 王松岭, 刘梅, 王思思, 吴正人. 随时间变化的非平整壁面对液膜表面波演化特性的影响. 物理学报, 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [11] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响. 物理学报, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [12] 梁中翥, 梁静秋, 方伟, 王维彪, 禹秉熙, 李亚楠, 郑娜. 辐射探测芯片吸收膜理论设计及镍磷黑膜制备. 物理学报, 2010, 59(7): 4530-4534. doi: 10.7498/aps.59.4530
    [13] 李标, 褚君浩, 陈新强, 刘坤, 曹菊英, 汤定元. 汞压对液相外延(Hg,Cd)Te的液相线及组份的影响. 物理学报, 1995, 44(6): 853-861. doi: 10.7498/aps.44.853
    [14] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [15] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [16] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [17] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [18] 刘光友, 谭兴文, 姚金才, 王 振, 熊祖洪. 电化学制备薄黑硅抗反射膜. 物理学报, 2008, 57(1): 514-518. doi: 10.7498/aps.57.514
    [19] 彭方志, 曹江陵. Einstein-Maxwell-Dilaton黑膜的狄拉克粒子辐射. 物理学报, 1998, 47(2): 177-182. doi: 10.7498/aps.47.177
    [20] 闵敬春. 滴状冷凝中液滴的内外压差及临界半径. 物理学报, 2002, 51(12): 2730-2732. doi: 10.7498/aps.51.2730
  • 引用本文:
    Citation:
计量
  • 文章访问数:  307
  • PDF下载量:  126
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-26
  • 修回日期:  2017-07-16
  • 刊出日期:  2017-10-05

分离压和表面黏度的协同作用对液膜排液过程的影响

  • 1. 华北电力大学, 电站设备状态监测与控制教育部重点实验室, 保定 071003
  • 通信作者: 李春曦, leechunxi@163.com
    基金项目: 

    国家自然科学基金(批准号:11202079)和中央高校基本科研业务费专项资金(批准号:13MS97)资助的课题.

摘要: 针对含不溶性活性剂的垂直液膜排液过程,在考虑分离压作用的前提下,引入随活性剂浓度变化的表面黏度模型,应用润滑理论建立了液膜厚度、活性剂浓度和液膜表面速度的演化方程组,通过数值计算分析了常表面黏度和变表面黏度情形下的液膜演化特征.结果表明:表面黏度是影响液膜排液过程的重要因素,当不考虑表面黏度时,液膜表面呈流动模式,反之呈刚性模式,且随表面黏度增加,液膜排液速率明显减缓.分离压对黑膜的形成至关重要,分离压单独作用时,其形成的黑膜长度较短,而只考虑表面黏度时,则不能形成稳定的黑膜.而在二者协同作用下,液膜中部形成了向下扩展、厚度很薄但非常稳定的黑膜,且黑膜厚度、出现时间均随表面黏度的增大而增加.当考虑活性剂浓度对表面黏度的影响时,表面速度受此影响显著;在形成黑膜长度及出现时间方面与相应常表面黏度的情形基本类似,但其黑膜厚度小于相应常表面黏度,故在液膜排液过程中更容易发生失稳.

English Abstract

参考文献 (45)

目录

    /

    返回文章
    返回