搜索

文章查询

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型超导量子比特及量子物理问题的研究

赵士平 刘玉玺 郑东宁

新型超导量子比特及量子物理问题的研究

赵士平, 刘玉玺, 郑东宁
PDF
导出引用
导出核心图
  • 近年来,超导量子计算的研究有了很大的进展.本文首先介绍了nSQUID新型超导量子比特的制备和研究进展,包括器件的平面多层膜制备工艺和量子相干性的研究.这类器件在量子态的传输速度和二维势系统的基础物理问题研究方面有着很大的优越性.其次,国际上新近发展的平面形式的transmon和Xmon超导量子比特具有更长的量子相干时间,在器件的设计和耦合方面也有相当的灵活性.本文介绍了我们和浙江大学与中国科学技术大学等单位合作逐步完善的这种形式的Xmon器件的制备工艺、制备出的多种耦合量子比特芯片,以及参与合作,在国际上首次完成的多达10个超导量子比特的量子态纠缠、线性方程组量子算法的实现和多体局域态等固体物理问题的量子模拟.最后介绍了基于这些超导量子比特器件开展的大量的量子物理、非线性物理和量子光学方面的研究,包括在Autler-Townes劈裂、电磁诱导透明、受激拉曼绝热通道、循环跃迁和关联激光等方面形成的一整套系统和独特的研究成果.
      通信作者: 赵士平, spzhao@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:91321208)资助的课题.
    [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [2]

    Wendin G, Shumeiko V S 2006 in Rieth M, Schommers W eds. Handbook of Theoretical and Computational Nanotechnology (American Scientific Publishers)

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031

    [4]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169

    [5]

    Wendin G 2016 arXiv: 161002208 [quant-ph] [2018-4-28]

    [6]

    Liu W Y, Zheng D N, Zhao S P 2018 Chin. Phys. B 27 027401

    [7]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718-719 1

    [8]

    Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Ye, Zhu X B, Zheng D N, Lu Li, Zhao S P 2017 Chin. Phys. B 26 060308

    [9]

    Xue G M, Deng H, Tian Ye, Liu W Y, Xu H K, Zheng D N, Zhao S P Chinese Patent Z L 2017 201410475485X (in Chinese) [薛光明, 邓辉, 田野, 刘伟洋, 徐晖凯, 郑东宁, 赵士平 2017 中国专利 ZL 201410475485X]

    [10]

    Liu W Y, Su F F, Xu H K, Li Z Y, Tian Ye, Zhu X B, Lu Li, Han S, Zhao S P 2018 Supercond. Sci. Technol. 31 045003

    [11]

    Jin Y R, Deng H, Guo X Y, Zheng Y R, Huang K Q, Ning L H, Zheng D N 2017 IEEE Trans. Appl. Supercond. 27 1501904

    [12]

    Liu W Y, Xu H K, Su F F, Li Z Y, Tian Ye, Han S, Zhao S P 2018 Phys. Rev. B 97 094513

    [13]

    Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203

    [14]

    Zheng Y R, Song C, Chen M C, Xia B X, Liu W X, Guo Q J, Zhang L B, Xu D, Deng H, Huang K Q, Wu Y L, Yan Z G, Zheng D N, Lu Li, Pan J W, Wang H, Lu C Y, Zhu X B 2017 Phys. Rev. Lett. 118 210504

    [15]

    Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S, Pan J W 2017 Phys. Rev. Lett. 119 180511

    [16]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507

    [17]

    Xue G M, Gong M, Xu H K, Liu W Y, Deng H, Tian Ye, Yu H F, Yu Y, Zheng D N, Zhao S P, Han S 2014 Phys. Rev. B 90 224505

    [18]

    Sun H C, Liu Y X, Ian H, You J Q, Il’ichev E, Nori F 2014 Phys. Rev. A 89 063822

    [19]

    Gu X, Huai S N, Nori F, Liu Y X 2016 Phys. Rev. A 93 063827

    [20]

    Long J L, Ku H S, Wu X, Gu X, Lake R E, Bal M, Liu Y X, Pappas D P 2018 Phys. Rev. Lett. 120 083602

    [21]

    Ding J H, Huai S N, Ian H, Liu Y X 2018 Sci. Rep. 8 4507

    [22]

    Peng Z H, Ding J H, Zhou Y, Ying L L, Wang Z, Zhou L, Kuang L M, Liu Y X, Astfiev O, Tsai J S 2017 arXiv:170511118 [quant-ph] [2018-4-28]

    [23]

    Liu Y X, Xu X W, Miranowicz A, Nori F 2014 Phys. Rev. A 89 043818

    [24]

    Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Ye, Zheng D N, Han S, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Commun. 7 11018

    [25]

    Wu Y L, Yang L P, Zheng Y R, Deng H, Yan Z G, Zhao Y J, Huang K Q, Munro W J, Nemoto K, Zheng D N, Sun C P, Liu Y X, Zhu X B, Lu Li 2018 npj Quantum Information 4 50

    [26]

    Zhao Y J, Liu Y L, Liu Y X, Nori F 2015 Phys. Rev. A 91 053820

    [27]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [28]

    Peng Z H, Liu Y X, Peltonen J T, Yamamoto T, Tsai J S, Astafiev O 2015 Phys. Rev. Lett. 115 223603

    [29]

    Liu Y X, Sun H C, Peng Z H, Miranowicz A, Tsai J S, Nori F 2014 Sci. Rep. 4 7289

    [30]

    Jia W Z, Wang Y W, Liu Y X 2017 Phys. Rev. A 96 053832

    [31]

    Zhao Y J, Ding J H, Peng Z H, Liu Y X 2017 Phys. Rev. A 95 043806

    [32]

    Tanamoto T, Ono K, Liu Y X, Nori F 2015 Sci. Rep. 5 10076

    [33]

    Gu X, Chen S, Liu Y X 2017 arXiv:171106829 [quant-ph] [2018-4-28]

    [34]

    Ian H, Liu Y X 2014 Phys. Rev. A 89 043804

  • [1]

    Makhlin Y, Schon G, Shnirman A 2001 Rev. Mod. Phys. 73 357

    [2]

    Wendin G, Shumeiko V S 2006 in Rieth M, Schommers W eds. Handbook of Theoretical and Computational Nanotechnology (American Scientific Publishers)

    [3]

    Clarke J, Wilhelm F K 2008 Nature 453 1031

    [4]

    Devoret M H, Schoelkopf R J 2013 Science 339 1169

    [5]

    Wendin G 2016 arXiv: 161002208 [quant-ph] [2018-4-28]

    [6]

    Liu W Y, Zheng D N, Zhao S P 2018 Chin. Phys. B 27 027401

    [7]

    Gu X, Kockum A F, Miranowicz A, Liu Y X, Nori F 2017 Phys. Rep. 718-719 1

    [8]

    Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Ye, Zhu X B, Zheng D N, Lu Li, Zhao S P 2017 Chin. Phys. B 26 060308

    [9]

    Xue G M, Deng H, Tian Ye, Liu W Y, Xu H K, Zheng D N, Zhao S P Chinese Patent Z L 2017 201410475485X (in Chinese) [薛光明, 邓辉, 田野, 刘伟洋, 徐晖凯, 郑东宁, 赵士平 2017 中国专利 ZL 201410475485X]

    [10]

    Liu W Y, Su F F, Xu H K, Li Z Y, Tian Ye, Zhu X B, Lu Li, Han S, Zhao S P 2018 Supercond. Sci. Technol. 31 045003

    [11]

    Jin Y R, Deng H, Guo X Y, Zheng Y R, Huang K Q, Ning L H, Zheng D N 2017 IEEE Trans. Appl. Supercond. 27 1501904

    [12]

    Liu W Y, Xu H K, Su F F, Li Z Y, Tian Ye, Han S, Zhao S P 2018 Phys. Rev. B 97 094513

    [13]

    Huang K Q, Guo Q J, Song C, Zheng Y R, Deng H, Wu Y L, Jin Y R, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203

    [14]

    Zheng Y R, Song C, Chen M C, Xia B X, Liu W X, Guo Q J, Zhang L B, Xu D, Deng H, Huang K Q, Wu Y L, Yan Z G, Zheng D N, Lu Li, Pan J W, Wang H, Lu C Y, Zhu X B 2017 Phys. Rev. Lett. 118 210504

    [15]

    Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S, Pan J W 2017 Phys. Rev. Lett. 119 180511

    [16]

    Xu K, Chen J J, Zeng Y, Zhang Y R, Song C, Liu W X, Guo Q J, Zhang P F, Xu D, Deng H, Huang K Q, Wang H, Zhu X B, Zheng D N, Fan H 2018 Phys. Rev. Lett. 120 050507

    [17]

    Xue G M, Gong M, Xu H K, Liu W Y, Deng H, Tian Ye, Yu H F, Yu Y, Zheng D N, Zhao S P, Han S 2014 Phys. Rev. B 90 224505

    [18]

    Sun H C, Liu Y X, Ian H, You J Q, Il’ichev E, Nori F 2014 Phys. Rev. A 89 063822

    [19]

    Gu X, Huai S N, Nori F, Liu Y X 2016 Phys. Rev. A 93 063827

    [20]

    Long J L, Ku H S, Wu X, Gu X, Lake R E, Bal M, Liu Y X, Pappas D P 2018 Phys. Rev. Lett. 120 083602

    [21]

    Ding J H, Huai S N, Ian H, Liu Y X 2018 Sci. Rep. 8 4507

    [22]

    Peng Z H, Ding J H, Zhou Y, Ying L L, Wang Z, Zhou L, Kuang L M, Liu Y X, Astfiev O, Tsai J S 2017 arXiv:170511118 [quant-ph] [2018-4-28]

    [23]

    Liu Y X, Xu X W, Miranowicz A, Nori F 2014 Phys. Rev. A 89 043818

    [24]

    Xu H K, Song C, Liu W Y, Xue G M, Su F F, Deng H, Tian Ye, Zheng D N, Han S, Zhong Y P, Wang H, Liu Y X, Zhao S P 2016 Nat. Commun. 7 11018

    [25]

    Wu Y L, Yang L P, Zheng Y R, Deng H, Yan Z G, Zhao Y J, Huang K Q, Munro W J, Nemoto K, Zheng D N, Sun C P, Liu Y X, Zhu X B, Lu Li 2018 npj Quantum Information 4 50

    [26]

    Zhao Y J, Liu Y L, Liu Y X, Nori F 2015 Phys. Rev. A 91 053820

    [27]

    Zhao Y J, Wang C Q, Zhu X B, Liu Y X 2016 Sci. Rep. 6 23646

    [28]

    Peng Z H, Liu Y X, Peltonen J T, Yamamoto T, Tsai J S, Astafiev O 2015 Phys. Rev. Lett. 115 223603

    [29]

    Liu Y X, Sun H C, Peng Z H, Miranowicz A, Tsai J S, Nori F 2014 Sci. Rep. 4 7289

    [30]

    Jia W Z, Wang Y W, Liu Y X 2017 Phys. Rev. A 96 053832

    [31]

    Zhao Y J, Ding J H, Peng Z H, Liu Y X 2017 Phys. Rev. A 95 043806

    [32]

    Tanamoto T, Ono K, Liu Y X, Nori F 2015 Sci. Rep. 5 10076

    [33]

    Gu X, Chen S, Liu Y X 2017 arXiv:171106829 [quant-ph] [2018-4-28]

    [34]

    Ian H, Liu Y X 2014 Phys. Rev. A 89 043804

  • [1] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [2] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展. 物理学报, 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [3] 孔祥宇, 朱垣晔, 闻经纬, 辛涛, 李可仁, 龙桂鲁. 核磁共振量子信息处理研究的新进展. 物理学报, 2018, 67(22): 220301. doi: 10.7498/aps.67.20180754
    [4] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [5] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态. 物理学报, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [6] 喻祥敏, 谭新生, 于海峰, 于扬. 利用超导量子电路模拟拓扑量子材料. 物理学报, 2018, 67(22): 220302. doi: 10.7498/aps.67.20181857
    [7] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
    [8] 顾斌杰, 叶 宾, 须文波. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [9] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [10] 曾碧榕, 姚淅伟, 刘钦, 牟晓阳, 林星程, 杨春, 潘健, 陈忠. 基于核磁共振的子空间量子过程重构. 物理学报, 2010, 59(10): 6837-6841. doi: 10.7498/aps.59.6837
    [11] 李盼池, 王海英, 宋考平, 杨二龙. 量子势阱粒子群优化算法的改进研究. 物理学报, 2012, 61(6): 060302. doi: 10.7498/aps.61.060302
    [12] 李盼池, 王海英, 戴庆, 肖红. 量子过程神经网络模型算法及应用. 物理学报, 2012, 61(16): 160303. doi: 10.7498/aps.61.160303
    [13] 刘刚钦, 邢健, 潘新宇. 金刚石氮空位中心自旋量子调控. 物理学报, 2018, 67(12): 120302. doi: 10.7498/aps.67.20180755
    [14] 田宇玲, 冯田峰, 周晓祺. 基于冗余图态的多人协作量子计算. 物理学报, 2019, 68(11): 110302. doi: 10.7498/aps.68.20190142
    [15] 李俊, 崔江煜, 杨晓东, 罗智煌, 潘健, 余琦, 李兆凯, 彭新华, 杜江峰. 核磁共振中的量子控制. 物理学报, 2015, 64(16): 167601. doi: 10.7498/aps.64.167601
    [16] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [17] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论. 物理学报, 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [18] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究. 物理学报, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [19] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [20] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析. 物理学报, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
  • 引用本文:
    Citation:
计量
  • 文章访问数:  381
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-28
  • 修回日期:  2018-05-14
  • 刊出日期:  2018-11-20

新型超导量子比特及量子物理问题的研究

  • 1. 中国科学院物理研究所, 北京凝聚态物理国家研究中心, 北京 100190;
  • 2. 清华大学微电子学研究所, 清华信息科学与技术国家实验室, 北京 100084;
  • 3. 中国科学院大学, 物理科学学院, 北京 100049
  • 通信作者: 赵士平, spzhao@iphy.ac.cn
    基金项目: 

    国家自然科学基金(批准号:91321208)资助的课题.

摘要: 近年来,超导量子计算的研究有了很大的进展.本文首先介绍了nSQUID新型超导量子比特的制备和研究进展,包括器件的平面多层膜制备工艺和量子相干性的研究.这类器件在量子态的传输速度和二维势系统的基础物理问题研究方面有着很大的优越性.其次,国际上新近发展的平面形式的transmon和Xmon超导量子比特具有更长的量子相干时间,在器件的设计和耦合方面也有相当的灵活性.本文介绍了我们和浙江大学与中国科学技术大学等单位合作逐步完善的这种形式的Xmon器件的制备工艺、制备出的多种耦合量子比特芯片,以及参与合作,在国际上首次完成的多达10个超导量子比特的量子态纠缠、线性方程组量子算法的实现和多体局域态等固体物理问题的量子模拟.最后介绍了基于这些超导量子比特器件开展的大量的量子物理、非线性物理和量子光学方面的研究,包括在Autler-Townes劈裂、电磁诱导透明、受激拉曼绝热通道、循环跃迁和关联激光等方面形成的一整套系统和独特的研究成果.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回