搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究

范伟利 杨宗林 张振雲 齐俊杰

高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究

范伟利, 杨宗林, 张振雲, 齐俊杰
PDF
导出引用
  • 碳基钙钛矿太阳能电池因稳定性高、成本低廉而备受关注,但由于钙钛矿与碳电极之间能级匹配度不高,界面阻力大而导致效率不及金属基钙钛矿太阳能电池.本文制备了碳基无空穴传输层FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon电池结构.通过对介孔二氧化钛层、钙钛矿层厚度进行优化,并对钙钛矿的薄膜形貌及钙钛矿激发电子寿命、可见光吸收度、载流子的提取与分离等进行深度分析,讨论了电池效率提升的内在机理.当介孔氧化钛层和钙钛矿层达到最优厚度时,钙钛矿太阳能电池获得了开路电压(Voc)为0.93 V、电流密度(Jsc)为21.75 mA/cm2、填充因子为55%、光电转化效率达到11.11%.同时对电池进行了稳定性研究,在室温湿度为40%–50%的条件下放置15 d电池性能依旧稳定保持原来的95%,优于金属基钙钛矿太阳能电池,从而为碳电极钙钛矿太阳能电池的商业化发展提供了可能.
      通信作者: 齐俊杰, junjieqi@ustb.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51572025)和国家基金(批准号:41422050303)经费资助的课题.
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 122 8604

    [3]

    Burschka J, Pellet N, Moon S, J Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [4]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, H Yoo, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081

    [5]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [6]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [7]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese) [柴磊, 钟敏 2016 物理学报 65 237902]

    [8]

    D’Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [10]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [11]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [12]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S i 2017 Science 356 1376

    [13]

    Nam J J, Hyejin N, Eui H J, Tae-Youl Y, Yong G L, Geunjin K, Hee-Won S, Sang I S, Jaemin L, Jangwon S 2018 Nat. Energy 3 682

    [14]

    Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N, Yang S H 2014 Energy Environ. Sci. 7 3326

    [15]

    Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H W 2015 J. Mater. Chem. A 3 9165

    [16]

    Yang Y Y, Xiao J Y, Wei H Y, Zhu L F, Li D M, Luo Y H, Wu H J, Meng Q B 2014 RSC Adv. 4 52825

    [17]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 18 16140

    [18]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132

    [19]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 6194 295

    [20]

    Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M 2015 Nano Lett. 15 2402

    [21]

    Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 Nano Energy 17 171

    [22]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108

    [23]

    Chen H, Wei Z, He H, Zheng X, Wong K S, Yang S 2016 Adv. Energy Mater. 6 1502087

    [24]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 6 16140

    [25]

    Anaraki E H, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Gratzel M, Hagfeldt A, Correa-Baena J 2016 Energy Environ. Sci. 9 3128

    [26]

    Reese M O, Gevorgyan S A, Jørgensen M, Bundgaard E, Kurtz S R, Ginley D S, Olson D C, Lloyd M T, Morvillo P, Katz E A, Elschner, Haillant A O, Currier T R, Shrotriya V, Hermenau M, Riede M, Kirov K R, Trimmel G, Krebs F C 2011 Sol. Energy Mater. Sol. Cells 95 1253

    [27]

    Berhe T A, Su W N, Che C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 122 8604

    [3]

    Burschka J, Pellet N, Moon S, J Humphry-Baker R, Gao P, Nazeeruddin M K, Gratzel M 2013 Nature 499 316

    [4]

    Son D Y, Lee J W, Choi Y J, Jang I H, Lee S, Yoo P J, H Yoo, Shin H, Ahn N, Choi M, Kim D, Park N G 2016 Nat. Energy 1 16081

    [5]

    Etgar L, Gao P, Xue Z, Peng Q, Chandiran A K, Liu B, Nazeeruddin M K, Gratzel M 2012 J. Am. Chem. Soc. 134 17396

    [6]

    Wehrenfennig C, Eperon G E, Johnston M B, Snaith H J, Herz L M 2014 Adv. Mater. 26 1584

    [7]

    Cai L, Zhong M 2016 Acta Phys. Sin. 65 237902 (in Chinese) [柴磊, 钟敏 2016 物理学报 65 237902]

    [8]

    D’Innocenzo V, Grancini G, Alcocer M J P, Kandada A R S, Stranks S D, Lee M M, Lanzani G, Snaith H J, Petrozza A 2014 Nat. Commun. 5 3586

    [9]

    Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341

    [10]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Grätzel M, Mhaisalkar S, Sum T C 2013 Science 342 344

    [11]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050

    [12]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J, Kim E K, Noh J H, Seok S i 2017 Science 356 1376

    [13]

    Nam J J, Hyejin N, Eui H J, Tae-Youl Y, Yong G L, Geunjin K, Hee-Won S, Sang I S, Jaemin L, Jangwon S 2018 Nat. Energy 3 682

    [14]

    Wei Z H, Yan K Y, Chen H N, Yi Y, Zhang T, Long X, Li J K, Zhang L X, Wang J N, Yang S H 2014 Energy Environ. Sci. 7 3326

    [15]

    Zhang L, Liu T, Liu L, Hu M, Yang Y, Mei A, Han H W 2015 J. Mater. Chem. A 3 9165

    [16]

    Yang Y Y, Xiao J Y, Wei H Y, Zhu L F, Li D M, Luo Y H, Wu H J, Meng Q B 2014 RSC Adv. 4 52825

    [17]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 18 16140

    [18]

    Ku Z, Rong Y, Xu M, Liu T, Han H 2013 Sci. Rep. 3 3132

    [19]

    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Gratzel M, Han H 2014 Science 6194 295

    [20]

    Xu X, Liu Z, Zuo Z, Zhang M, Zhao Z, Shen Y, Zhou H, Chen Q, Yang Y, Wang M 2015 Nano Lett. 15 2402

    [21]

    Cao K, Zuo Z, Cui J, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 Nano Energy 17 171

    [22]

    Zhang F, Yang X, Cheng M, Wang W, Sun L 2016 Nano Energy 20 108

    [23]

    Chen H, Wei Z, He H, Zheng X, Wong K S, Yang S 2016 Adv. Energy Mater. 6 1502087

    [24]

    Zhang F, Yang X, Wang H, Cheng M, Zhao J, Sun L 2014 ACS Appl. Mater. Interfaces 6 16140

    [25]

    Anaraki E H, Kermanpur A, Steier L, Domanski K, Matsui T, Tress W, Saliba M, Abate A, Gratzel M, Hagfeldt A, Correa-Baena J 2016 Energy Environ. Sci. 9 3128

    [26]

    Reese M O, Gevorgyan S A, Jørgensen M, Bundgaard E, Kurtz S R, Ginley D S, Olson D C, Lloyd M T, Morvillo P, Katz E A, Elschner, Haillant A O, Currier T R, Shrotriya V, Hermenau M, Riede M, Kirov K R, Trimmel G, Krebs F C 2011 Sol. Energy Mater. Sol. Cells 95 1253

    [27]

    Berhe T A, Su W N, Che C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323

  • 引用本文:
    Citation:
计量
  • 文章访问数:  2618
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-30
  • 修回日期:  2018-08-24
  • 刊出日期:  2019-11-20

高效无空穴传输层碳基钙钛矿太阳能电池的制备与性能研究

  • 1. 北京科技大学材料科学与工程学院, 北京 100083
  • 通信作者: 齐俊杰, junjieqi@ustb.edu.cn
    基金项目: 

    国家自然科学基金(批准号:51572025)和国家基金(批准号:41422050303)经费资助的课题.

摘要: 碳基钙钛矿太阳能电池因稳定性高、成本低廉而备受关注,但由于钙钛矿与碳电极之间能级匹配度不高,界面阻力大而导致效率不及金属基钙钛矿太阳能电池.本文制备了碳基无空穴传输层FTO/c-TiO2/m-TiO2/CH3NH3PbI3/Carbon电池结构.通过对介孔二氧化钛层、钙钛矿层厚度进行优化,并对钙钛矿的薄膜形貌及钙钛矿激发电子寿命、可见光吸收度、载流子的提取与分离等进行深度分析,讨论了电池效率提升的内在机理.当介孔氧化钛层和钙钛矿层达到最优厚度时,钙钛矿太阳能电池获得了开路电压(Voc)为0.93 V、电流密度(Jsc)为21.75 mA/cm2、填充因子为55%、光电转化效率达到11.11%.同时对电池进行了稳定性研究,在室温湿度为40%–50%的条件下放置15 d电池性能依旧稳定保持原来的95%,优于金属基钙钛矿太阳能电池,从而为碳电极钙钛矿太阳能电池的商业化发展提供了可能.

English Abstract

参考文献 (27)

目录

    /

    返回文章
    返回