搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究

贺书凯 齐伟 矫金龙 董克攻 邓志刚 滕建 张博 张智猛 洪伟 张辉 沈百飞 谷渝秋

基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究

贺书凯, 齐伟, 矫金龙, 董克攻, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 张辉, 沈百飞, 谷渝秋
PDF
导出引用
  • 基于带电粒子活化测谱方法在SGⅡ-U装置上开展了皮秒激光靶背鞘场机制质子加速实验研究,对靶参数进行了优化.利用带电粒子活化测谱方法测量了相同激光条件、不同Cu薄膜靶厚度情况下靶背鞘场加速质子的最高截止能量、角分布、总产额以及激光能量到质子的转化效率等关键参数.实验发现,SGⅡ-U皮秒激光靶背鞘场加速机制的最佳Cu薄膜靶厚度为10 μm,对应质子最高能量接近40 MeV,质子(>4 MeV)总产额约4×1012个,激光能量到质子的转化效率约2%.薄膜靶更厚或者更薄都会降低加速质子的最高截止能量;当靶厚减薄至1 μm时,皮秒激光的预脉冲开始对靶背鞘场产生显著影响,质子最高截止能量急剧下降,高能质子束斑呈现空心结构;而当靶厚增加至35 μm时,虽然质子束的能量有所降低,但是质子束斑的均匀性更好.
      通信作者: 贺书凯, shukai.he@caep.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0401100)、科学挑战计划(批准号:TZ2018005)和国家重大科学仪器设备开发专项(批准号:2012YQ03014206)资助的课题.
    [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [3]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Roth M, Cowan T E, Gauthier J C, Vehn J M, Allen M, Audebert P, Blazevic A, Fuchs J, Geissel M, Hegelich M, Karsch S, Pukhov A, Schlegel T 2002 Phys. Rev. ST Accel. Beams 5 061301

    [5]

    Roth M, Brambrink E, Audeert P, Basko M, Blazevic A, Clarke R, Cobble J, Cowan T E, Fernandez J, Fuchs J, Hegelich M, Ledingham K, Logan B G, Neely D, Ruhl H, Schollmeier M 2005 Plasma Phys. Control. Fusion 47 B841

    [6]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A, Snavely R A 2001 Phys. Plasmas 8 2

    [7]

    Ceccotti T, Levy A, Popescu H, Reau F, Oliveira P D, Monot P, Geindre J P, Lefebvre E, Martin P 2007 Phys. Rev. Lett. 99 185002

    [8]

    Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, McKenna P 2007 Nature Phys. 3 58

    [9]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, LeSage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [10]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [11]

    Yin L, Albright B J, Bowers K J, Jung D, Fernandez J C, Hegelich B M 2011 Phys. Rev. Lett. 107 045003

    [12]

    Yin L, Albright B J, Jung D, Shah R C, Palaniyappan S, Bowers K J, Henig A, Fernandez J C, Hegelich B M 2011 Phys. Plasmas 18 063103

    [13]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser and Particle Beams 24 291

    [14]

    Jung D, Yin L, Gautier D C, Wu H C, Letzring S 2013 Phys. Plasmas 20 083103

    [15]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 175003

    [16]

    Esirkepov T Z, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [17]

    Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301

    [18]

    Jiao J L, He S K, Deng Z G, Lu F, Zhang Y, Yang L, Zhang F Q, Dong K G, Wang S Y, Zhang B, Teng J, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 085201 (in Chinese) [矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋 2017 物理学报 66 085201]

    [19]

    Zhang H, Shen B F, Wang W P, Xu Y, Liu Y Q, Liang X Y, Leng Y X, Li R X, Yan X Q, Chen J E, Xu Z Z 2015 Phys. Plasmas 22 013113

    [20]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [21]

    Shan L Q, Cai H B, Zhang W S, Tang Q, Zhang F, Song Z F, Bi B, Ge F J, Chen J B, Liu D X, Wang W W, Yang Z H, Qi W, Tian C, Yuan Z Q, Zhang B, Yang L, Jiao J L, Cui B, Zhou W M, Cao L F, Zhou C T, Gu Y Q, Zhang B H, Zhu S P, He X T 2018 Phys. Rev. Lett. 120 195001

    [22]

    He S K, Liu D X, Jiao J L, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 205201 (in Chinese) [贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋 2017 物理学报 66 205201]

    [23]

    Meadows J W 1953 Phys. Rev. 91 885

  • [1]

    Tajima T, Dawson J M 1979 Phys. Rev. Lett. 43 267

    [2]

    Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945

    [3]

    Daido H, Nishiuchi M, Pirozhkov A S 2012 Rep. Prog. Phys. 75 056401

    [4]

    Roth M, Cowan T E, Gauthier J C, Vehn J M, Allen M, Audebert P, Blazevic A, Fuchs J, Geissel M, Hegelich M, Karsch S, Pukhov A, Schlegel T 2002 Phys. Rev. ST Accel. Beams 5 061301

    [5]

    Roth M, Brambrink E, Audeert P, Basko M, Blazevic A, Clarke R, Cobble J, Cowan T E, Fernandez J, Fuchs J, Hegelich M, Ledingham K, Logan B G, Neely D, Ruhl H, Schollmeier M 2005 Plasma Phys. Control. Fusion 47 B841

    [6]

    Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A, Snavely R A 2001 Phys. Plasmas 8 2

    [7]

    Ceccotti T, Levy A, Popescu H, Reau F, Oliveira P D, Monot P, Geindre J P, Lefebvre E, Martin P 2007 Phys. Rev. Lett. 99 185002

    [8]

    Robson L, Simpson P T, Clarke R J, Ledingham K W D, Lindau F, Lundh O, McCanny T, Mora P, Neely D, Wahlstrom C G, Zepf M, McKenna P 2007 Nature Phys. 3 58

    [9]

    Cowan T E, Fuchs J, Ruhl H, Kemp A, Audebert P, Roth M, Stephens R, Barton I, Blazevic A, Brambrink E, Cobble J, Fernandez J, Gauthier J C, Geissel M, Hegelich M, Kaae J, Karsch S, LeSage G P, Letzring S, Manclossi M, Meyroneinc S, Newkirk A, Pepin H, Renard-LeGalloudec N 2004 Phys. Rev. Lett. 92 204801

    [10]

    Patel P K, Mackinnon A J, Key M H, Cowan T E, Foord M E, Allen M, Price D F, Ruhl H, Springer P T, Stephens R 2003 Phys. Rev. Lett. 91 125004

    [11]

    Yin L, Albright B J, Bowers K J, Jung D, Fernandez J C, Hegelich B M 2011 Phys. Rev. Lett. 107 045003

    [12]

    Yin L, Albright B J, Jung D, Shah R C, Palaniyappan S, Bowers K J, Henig A, Fernandez J C, Hegelich B M 2011 Phys. Plasmas 18 063103

    [13]

    Yin L, Albright B J, Hegelich B M, Fernandez J C 2006 Laser and Particle Beams 24 291

    [14]

    Jung D, Yin L, Gautier D C, Wu H C, Letzring S 2013 Phys. Plasmas 20 083103

    [15]

    Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X, Chen J E 2008 Phys. Rev. Lett. 100 175003

    [16]

    Esirkepov T Z, Borghesi M, Bulanov S V, Mourou G, Tajima T 2004 Phys. Rev. Lett. 92 175003

    [17]

    Klimo O, Psikal J, Limpouch J, Tikhonchuk V T 2008 Phys. Rev. ST Accel. Beams 11 031301

    [18]

    Jiao J L, He S K, Deng Z G, Lu F, Zhang Y, Yang L, Zhang F Q, Dong K G, Wang S Y, Zhang B, Teng J, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 085201 (in Chinese) [矫金龙, 贺书凯, 邓志刚, 卢峰, 张镱, 杨雷, 张发强, 董克攻, 王少义, 张博, 滕建, 洪伟, 谷渝秋 2017 物理学报 66 085201]

    [19]

    Zhang H, Shen B F, Wang W P, Xu Y, Liu Y Q, Liang X Y, Leng Y X, Li R X, Yan X Q, Chen J E, Xu Z Z 2015 Phys. Plasmas 22 013113

    [20]

    Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stohlker T, Bagnoud V 2016 Phys. Rev. Lett. 116 205002

    [21]

    Shan L Q, Cai H B, Zhang W S, Tang Q, Zhang F, Song Z F, Bi B, Ge F J, Chen J B, Liu D X, Wang W W, Yang Z H, Qi W, Tian C, Yuan Z Q, Zhang B, Yang L, Jiao J L, Cui B, Zhou W M, Cao L F, Zhou C T, Gu Y Q, Zhang B H, Zhu S P, He X T 2018 Phys. Rev. Lett. 120 195001

    [22]

    He S K, Liu D X, Jiao J L, Deng Z G, Teng J, Zhang B, Zhang Z M, Hong W, Gu Y Q 2017 Acta Phys. Sin. 66 205201 (in Chinese) [贺书凯, 刘东晓, 矫金龙, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 谷渝秋 2017 物理学报 66 205201]

    [23]

    Meadows J W 1953 Phys. Rev. 91 885

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1604
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-08
  • 修回日期:  2018-09-20
  • 刊出日期:  2019-11-20

基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究

  • 1. 中国工程物理研究院激光聚变研究中心, 等离子体物理重点实验室, 绵阳 621900;
  • 2. 中国科学院上海光学精密机械研究所强光光学实验室, 上海 201800;
  • 3. 上海交通大学, 聚变科学与应用协同创新中心, 上海 200240;
  • 4. 北京大学应用物理与技术中心, 北京 100871
  • 通信作者: 贺书凯, shukai.he@caep.cn
    基金项目: 

    国家重点研发计划(批准号:2016YFA0401100)、科学挑战计划(批准号:TZ2018005)和国家重大科学仪器设备开发专项(批准号:2012YQ03014206)资助的课题.

摘要: 基于带电粒子活化测谱方法在SGⅡ-U装置上开展了皮秒激光靶背鞘场机制质子加速实验研究,对靶参数进行了优化.利用带电粒子活化测谱方法测量了相同激光条件、不同Cu薄膜靶厚度情况下靶背鞘场加速质子的最高截止能量、角分布、总产额以及激光能量到质子的转化效率等关键参数.实验发现,SGⅡ-U皮秒激光靶背鞘场加速机制的最佳Cu薄膜靶厚度为10 μm,对应质子最高能量接近40 MeV,质子(>4 MeV)总产额约4×1012个,激光能量到质子的转化效率约2%.薄膜靶更厚或者更薄都会降低加速质子的最高截止能量;当靶厚减薄至1 μm时,皮秒激光的预脉冲开始对靶背鞘场产生显著影响,质子最高截止能量急剧下降,高能质子束斑呈现空心结构;而当靶厚增加至35 μm时,虽然质子束的能量有所降低,但是质子束斑的均匀性更好.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回