搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面吸附K原子的多层FeSe/SrTiO3(001)薄膜的抗磁响应的原位测量

陈传廷 姚钢 段明超 管丹丹 李耀义 郑浩 王世勇 刘灿华 贾金锋

表面吸附K原子的多层FeSe/SrTiO3(001)薄膜的抗磁响应的原位测量

陈传廷, 姚钢, 段明超, 管丹丹, 李耀义, 郑浩, 王世勇, 刘灿华, 贾金锋
PDF
导出引用
  • SrTiO3(001)单晶表面上生长的单层FeSe薄膜显示出了超乎寻常的高温超导电性,其超导增强机制的一个重要因素是电子由衬底转移到了单层FeSe薄膜当中.基于此认识,研究者们在吸附了钾(K)原子的多层FeSe薄膜表面上观察到了类似超导能隙的隧穿能谱和光电子能谱.但这种自上而下的电子掺入方式在多层FeSe薄膜表面上可能引起的高温超导电性,还缺乏零电阻或迈斯纳效应等物性测量实验的直接证实.本研究利用自行研制的一台特殊的多功能扫描隧道显微镜,在生长于SrTiO3(001)衬底上的多层FeSe薄膜表面上,不但观察到了超导能隙随K吸附量的变化,而且利用原位双线圈互感测量技术,成功地的观察到了该薄膜的抗磁响应,并由此确定了该薄膜样品呈现迈斯纳效应的超导转变温度为23.9 K.其穿透深度随温度的变化呈二次幂指数关系,表明该体系的超导序参量很可能具有S±配对对称性.
      通信作者: 刘灿华, canhualiu@sjtu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2016YFA0300403,2016YFA0301003)、国家自然科学基金(批准号:11521404,11574202,11634009,11655002,11504230,U1632102)和上海市科委科技基金(批准号:15JC1402300,16DZ2260200)资助的课题.
    [1]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [2]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [3]

    Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, Wang Y 2015 Sci. Bull. 60 1301

    [4]

    Sun Y, Zhang W, Xing Y, Li F, Zhao Y, Xia Z, Wang L, Ma X, Xue Q K, Wang J 2014 Sci. Rep. 4 6040

    [5]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285

    [6]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [7]

    Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508

    [8]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [9]

    Coh S, Cohen M L, Louie S G 2015 New J. Phys. 17 073027

    [10]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L, Ma X, Xue Q K, Zhao J 2016 Phys. Rev. Lett. 116 107001

    [11]

    Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D 2013 Nature Mater. 12 634

    [12]

    Wang Q, Zhang W, Chen W, Xing Y, Sun Y, Wang Z, Mei J W, Wang Z, Wang L, Ma X C, Liu F, Xue Q K, Wang J 2017 2D Mater. 4 034004

    [13]

    Cao H Y, Tan S, Xiang H, Feng D L, Gong X G 2014 Phys. Rev. B 89 014501

    [14]

    Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001

    [15]

    Zhang W, Li Z, Li F, Zhang H, Peng J, Tang C, Wang Q, He K, Chen X, Wang L, Ma X, Xue Q K 2014 Phys. Rev. B 89 060506

    [16]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [17]

    Bang J, Li Z, Sun Y Y, Samanta A, Zhang Y Y, Zhang W, Wang L, Chen X, Ma X, Xue Q K, Zhang S B 2013 Phys. Rev. B 87 220503

    [18]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775

    [19]

    Tang C, Zhang D, Zang Y, Liu C, Zhou G, Li Z, Zheng C, Hu X, Song C, Ji S, He K, Chen X, Wang L, Ma X, Xue Q K 2015 Phys. Rev. B 92 180507

    [20]

    Wen C H, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nature Commun. 7 10840

    [21]

    Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, Xue Q K 2016 Phys. Rev. Lett. 116 157001

    [22]

    Tang C, Liu C, Zhou G, Li F, Ding H, Li Z, Zhang D, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q K 2016 Phys. Rev. B 93 020507

    [23]

    Zhang W H, Liu X, Wen C H, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969

    [24]

    Zhang M L, Ge J F, Duan M C, Yao G, Liu Z L, Guan D D, Li Y Y, Qian D, Liu C H, Jia J F 2016 Acta Phys. Sin. 65 127401 (in Chinese) [张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋 2016 物理学报 65 127401]

    [25]

    Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902

    [26]

    Ge J F, Liu Z L, Gao C L, Qian D, Liu C, Jia J F 2015 Rev. Sci. Instrum 86 053903

    [27]

    Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys. Condens. Matter 26 265002

    [28]

    Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291

    [29]

    Leemann C, Lerch P, Racine G, Martinoli P 1986 Phys. Rev. Lett. 56 1291

    [30]

    Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221

    [31]

    Kogan V G, Prozorov R, Mishra V 2013 Phys. Rev. B 88 224508

    [32]

    Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Liu Y, Lograsso T A, Straszheim W E, Mishra V, Maiti S, Hirschfeld P J, Prozorov R 2016 Sci. Adv. 2 e1600807

    [33]

    Cho K, Fente A, Teknowijoyo S, Tanatar M A, Joshi K R, Nusran N M, Kong T, Meier W R, Kaluarachchi U, Guillamón I, Suderow H, Bud’ko S L, Canfield P C, Prozorov R 2017 Phys. Rev. B 95 100502

    [34]

    Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505

    [35]

    Du Z, Yang X, Altenfeld D, Gu Q, Yang H, Eremin I, Hirschfeld Peter J, Mazin I I, Lin H, Zhu X, Wen H H 2017 Nature Phys. 14 134

  • [1]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [2]

    Zhang W H, Sun Y, Zhang J S, Li F S, Guo M H, Zhao Y F, Zhang H M, Peng J P, Xing Y, Wang H C, Fujita T, Hirata A, Li Z, Ding H, Tang C J, Wang M, Wang Q Y, He K, Ji S H, Chen X, Wang J F, Xia Z C, Li L, Wang Y Y, Wang J, Wang L L, Chen M W, Xue Q K, Ma X C 2014 Chin. Phys. Lett. 31 017401

    [3]

    Zhang Z, Wang Y H, Song Q, Liu C, Peng R, Moler K A, Feng D, Wang Y 2015 Sci. Bull. 60 1301

    [4]

    Sun Y, Zhang W, Xing Y, Li F, Zhao Y, Xia Z, Wang L, Ma X, Xue Q K, Wang J 2014 Sci. Rep. 4 6040

    [5]

    Ge J F, Liu Z L, Liu C, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nature Mater. 14 285

    [6]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. U. S. A. 105 14262

    [7]

    Xiang Y Y, Wang F, Wang D, Wang Q H, Lee D H 2012 Phys. Rev. B 86 134508

    [8]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [9]

    Coh S, Cohen M L, Louie S G 2015 New J. Phys. 17 073027

    [10]

    Tian Y C, Zhang W H, Li F S, Wu Y L, Wu Q, Sun F, Zhou G Y, Wang L, Ma X, Xue Q K, Zhao J 2016 Phys. Rev. Lett. 116 107001

    [11]

    Tan S, Zhang Y, Xia M, Ye Z, Chen F, Xie X, Peng R, Xu D, Fan Q, Xu H, Jiang J, Zhang T, Lai X, Xiang T, Hu J, Xie B, Feng D 2013 Nature Mater. 12 634

    [12]

    Wang Q, Zhang W, Chen W, Xing Y, Sun Y, Wang Z, Mei J W, Wang Z, Wang L, Ma X C, Liu F, Xue Q K, Wang J 2017 2D Mater. 4 034004

    [13]

    Cao H Y, Tan S, Xiang H, Feng D L, Gong X G 2014 Phys. Rev. B 89 014501

    [14]

    Peng R, Shen X P, Xie X, Xu H C, Tan S Y, Xia M, Zhang T, Cao H Y, Gong X G, Hu J P, Xie B P, Feng D L 2014 Phys. Rev. Lett. 112 107001

    [15]

    Zhang W, Li Z, Li F, Zhang H, Peng J, Tang C, Wang Q, He K, Chen X, Wang L, Ma X, Xue Q K 2014 Phys. Rev. B 89 060506

    [16]

    He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nature Mater. 12 605

    [17]

    Bang J, Li Z, Sun Y Y, Samanta A, Zhang Y Y, Zhang W, Wang L, Chen X, Ma X, Xue Q K, Zhang S B 2013 Phys. Rev. B 87 220503

    [18]

    Miyata Y, Nakayama K, Sugawara K, Sato T, Takahashi T 2015 Nature Mater. 14 775

    [19]

    Tang C, Zhang D, Zang Y, Liu C, Zhou G, Li Z, Zheng C, Hu X, Song C, Ji S, He K, Chen X, Wang L, Ma X, Xue Q K 2015 Phys. Rev. B 92 180507

    [20]

    Wen C H, Xu H C, Chen C, Huang Z C, Lou X, Pu Y J, Song Q, Xie B P, Abdel Hafiez M, Chareev D A, Vasiliev A N, Peng R, Feng D L 2016 Nature Commun. 7 10840

    [21]

    Song C L, Zhang H M, Zhong Y, Hu X P, Ji S H, Wang L, He K, Ma X C, Xue Q K 2016 Phys. Rev. Lett. 116 157001

    [22]

    Tang C, Liu C, Zhou G, Li F, Ding H, Li Z, Zhang D, Li Z, Song C, Ji S, He K, Wang L, Ma X, Xue Q K 2016 Phys. Rev. B 93 020507

    [23]

    Zhang W H, Liu X, Wen C H, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969

    [24]

    Zhang M L, Ge J F, Duan M C, Yao G, Liu Z L, Guan D D, Li Y Y, Qian D, Liu C H, Jia J F 2016 Acta Phys. Sin. 65 127401 (in Chinese) [张马淋, 葛剑峰, 段明超, 姚钢, 刘志龙, 管丹丹, 李耀义, 钱冬, 刘灿华, 贾金锋 2016 物理学报 65 127401]

    [25]

    Duan M C, Liu Z L, Ge J F, Tang Z J, Wang G Y, Wang Z X, Guan D, Li Y Y, Qian D, Liu C, Jia J F 2017 Rev. Sci. Instrum. 88 073902

    [26]

    Ge J F, Liu Z L, Gao C L, Qian D, Liu C, Jia J F 2015 Rev. Sci. Instrum 86 053903

    [27]

    Li Z, Peng J P, Zhang H M, Zhang W H, Ding H, Deng P, Chang K, Song C L, Ji S H, Wang L, He K, Chen X, Xue Q K, Ma X C 2014 J. Phys. Condens. Matter 26 265002

    [28]

    Hebard A F, Fiory A T 1980 Phys. Rev. Lett. 44 291

    [29]

    Leemann C, Lerch P, Racine G, Martinoli P 1986 Phys. Rev. Lett. 56 1291

    [30]

    Turneaure S J, Ulm E R, Lemberger T R 1996 J. Appl. Phys. 79 4221

    [31]

    Kogan V G, Prozorov R, Mishra V 2013 Phys. Rev. B 88 224508

    [32]

    Cho K, Kończykowski M, Teknowijoyo S, Tanatar M A, Liu Y, Lograsso T A, Straszheim W E, Mishra V, Maiti S, Hirschfeld P J, Prozorov R 2016 Sci. Adv. 2 e1600807

    [33]

    Cho K, Fente A, Teknowijoyo S, Tanatar M A, Joshi K R, Nusran N M, Kong T, Meier W R, Kaluarachchi U, Guillamón I, Suderow H, Bud’ko S L, Canfield P C, Prozorov R 2017 Phys. Rev. B 95 100502

    [34]

    Prozorov R, Kogan V G 2011 Rep. Prog. Phys. 74 124505

    [35]

    Du Z, Yang X, Altenfeld D, Gu Q, Yang H, Eremin I, Hirschfeld Peter J, Mazin I I, Lin H, Zhu X, Wen H H 2017 Nature Phys. 14 134

  • 引用本文:
    Citation:
计量
  • 文章访问数:  1730
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-12
  • 修回日期:  2018-09-14
  • 刊出日期:  2019-11-20

表面吸附K原子的多层FeSe/SrTiO3(001)薄膜的抗磁响应的原位测量

  • 1. 上海交通大学物理与天文学院, 人工结构及量子调控教育部重点实验室, 上海 200240;
  • 2. 人工微结构科学与技术协同创新中心, 南京 210093
  • 通信作者: 刘灿华, canhualiu@sjtu.edu.cn
    基金项目: 

    国家重点基础研究发展计划(批准号:2016YFA0300403,2016YFA0301003)、国家自然科学基金(批准号:11521404,11574202,11634009,11655002,11504230,U1632102)和上海市科委科技基金(批准号:15JC1402300,16DZ2260200)资助的课题.

摘要: SrTiO3(001)单晶表面上生长的单层FeSe薄膜显示出了超乎寻常的高温超导电性,其超导增强机制的一个重要因素是电子由衬底转移到了单层FeSe薄膜当中.基于此认识,研究者们在吸附了钾(K)原子的多层FeSe薄膜表面上观察到了类似超导能隙的隧穿能谱和光电子能谱.但这种自上而下的电子掺入方式在多层FeSe薄膜表面上可能引起的高温超导电性,还缺乏零电阻或迈斯纳效应等物性测量实验的直接证实.本研究利用自行研制的一台特殊的多功能扫描隧道显微镜,在生长于SrTiO3(001)衬底上的多层FeSe薄膜表面上,不但观察到了超导能隙随K吸附量的变化,而且利用原位双线圈互感测量技术,成功地的观察到了该薄膜的抗磁响应,并由此确定了该薄膜样品呈现迈斯纳效应的超导转变温度为23.9 K.其穿透深度随温度的变化呈二次幂指数关系,表明该体系的超导序参量很可能具有S±配对对称性.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回