搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究

贺锋涛 杜迎 张建磊 房伟 李碧丽 朱云周

引用本文:
Citation:

Gamma-gamma海洋各向异性湍流下脉冲位置调制无线光通信的误码率研究

贺锋涛, 杜迎, 张建磊, 房伟, 李碧丽, 朱云周

Bit error rate of pulse position modulation wireless optical communication in gamma-gamma oceanic anisotropic turbulence

He Feng-Tao, Du Ying, Zhang Jian-Lei, Fang Wei, Li Bi-Li, Zhu Yun-Zhou
PDF
HTML
导出引用
  • 采用脉冲位置调制(pulse position modulation, PPM)的水下激光通信系统模型, 根据弱大气湍流球面波闪烁指数与弱海洋湍流球面波闪烁指数相等的关系, 推导出海洋湍流参数和各向异性因子表示的结构参数, 利用该结构参数结合已有大气湍流中的平均光功率公式, 计算各向异性海洋湍流的平均光功率; 此外, 基于PPM通信系统误码率(bit error rate, BER)公式、gamma-gamma湍流信道和渐近Rytov理论, 数值模拟研究了在不同的各向异性海洋湍流下, 海洋湍流参数、平均雪崩光电二极管(avalanche photodiode, APD)增益、PPM调制阶数M、数据比特率对误码率的影响. 结果表明, 随着温度与盐度对功率谱变化贡献之比、温度方差耗散率和比特率的增加, 误码率增大; 当黏度系数增加时, 误码率减小; 但是随着平均APD增益的增加, 误码率先减小后增大; 当海洋湍流各向异性增大到一定程度时, 误码率并不随着湍流动能耗散率的增加而一直减小; 海洋湍流的各向异性因子越强, 误码率越小.
    Pulse position modulation (PPM) technology combined with the system of wireless optical communication received by the photon detector has the advantages of high energy efficiency and strong anti-interference capability. This technology has received extensive attention in the field of underwater wireless optical communication (UWOC) system. Affected by ocean turbulence, the UWOC system will produce the intensity fluctuations, leading the system performance to degrade. The Gamma-gamma intensity fluctuation probability model, which is a two-parameter model, possesses a wide range of applications. It can describe weak, medium and strong fluctuation in light intensity statistics. In this paper, firstly, based on the relationship between the weak atmospheric turbulent spherical wave scintillation index and the weak ocean anisotropic turbulent spherical wave scintillation index, the equivalent structural parameter expressed by both ocean turbulence parameters and anisotropy factor is derived. Then, using the structural parameter combined with the gamma-gamma turbulence channel and the asymptotic Rytov theory, the bit error rate (BER) under anisotropic ocean turbulence is calculated based on the BER formula of the PPM communication system. Finally, numerical simulations are carried out to analyze the ocean turbulence parameters, the average avalanche photodiode (APD) gain, the PPM modulation order, the data bit rate, and the influences of transmission distance on the BER under different anisotropic ocean turbulences. The results indicate that the negative effect of turbulence becomes stronger with increasing the ratio between the contributions of temperature and salinity to the refractive index spectrum, the dissipation rate of mean-squared temperature, data bit rate, and propagation distance. As the viscosity coefficient increases, the BER decreases. When the isotropic ocean turbulence and the anisotropy factors are very small, the increase of the rate of dissipation of kinetic energy per unit mass of fluid will result in a decrease in BER. When the turbulent environment anisotropy is further strengthened, the BER first increases and then decreases as the rate of dissipation of kinetic energy per unit mass of fluid increases. As the average APD gain increases, the BER first decreases and then increases. This trend is especially noticeable as the anisotropy factor increases. The choice of the average APD gain is important for finding the minimum value of the BER. In general, the system is more affected by salinity fluctuation than by temperature fluctuation. As the rate of dissipation of mean-squared temperature increases and the viscosity coefficient decreases, the negative effects of turbulence becomes more and more serious. When the system propagates longer distances or works at a higher data bit rate, the system is severely affected by turbulence, which limits the system operating distance and data transmission rate. However, using a smaller modulation order and choosing the right APD can conduce to improving the system performance. In addition, the PPM UWOC system can perform better when the system operates within acceptable bit error rate as the ocean turbulence environment becomes more anisotropic. This study will provide reference for the construction and performance estimation of UWOC system platform.
      通信作者: 张建磊, zhangjianlei@xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61805199)、国防科技创新特区项目(批准号: 18-H863-01-ZT-001-004-02)和陕西省自然科学基金(批准号: 2018JQ6065)资助的课题.
      Corresponding author: Zhang Jian-Lei, zhangjianlei@xupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61805199), National Defense Science and Technology Innovation Special Zone Project, China (Grant No. 18-H863-01-ZT-001-004-02), and the National Natural Science Foundation of Shaanxi Province, China (Grant No. 2018JQ6065).
    [1]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82Google Scholar

    [2]

    Kiasaleh K 2005 IEEE Trans. Commun. 53 1455Google Scholar

    [3]

    Gappmair W, Muhammad S S 2007 Electron. Lett. 43 302Google Scholar

    [4]

    Gappmair W, Muhammad S S 2007 Electron. Lett. 43 880Google Scholar

    [5]

    Yi X, Liu Z J, Yue P, Shang T 2010 6th International Conference on Wireless Communications Networking and Mobile Computing Chengdu, China, September 23−25, 2010 p1

    [6]

    Gappmair W, Hranilovic S, Leitgeb E 2010 IEEE Commun. Lett. 14 468Google Scholar

    [7]

    Saidi H, Tourki K, Hamdi N 2016 International Symposium on Signal, Image, Video and Communications Tunis, Tunisia, November 21—23, 2016 p207

    [8]

    Barua B, Hossain M M 2012 15th International Conference on Computer and Information Technology Chittagong, Bangladesh, December 22−24, 2012 p295

    [9]

    Arpali S A, Baykal Y, Arpali Ç 2016 J. Mod. Opt. 63 1297

    [10]

    Gerçekcioğlu H 2014 J. Opt. Soc. Am. A 31 1963Google Scholar

    [11]

    Yousefi M, Golmohammady S, Mashal A, Kashani F D 2015 J. Opt. Soc. Am. A 32 1982Google Scholar

    [12]

    Yi X, Li Z, Liu Z 2015 Appl. Opt. 54 1273Google Scholar

    [13]

    Ata Y, Baykal Y 2018 Appl. Opt. 57 2258Google Scholar

    [14]

    Baykal Y 2018 J. Opt. Soc. Am. A 35 1627Google Scholar

    [15]

    Peppas K P, Boucouvalas A C, Ghassemlooy Z 2017 IET Optoelectron. 11 180Google Scholar

    [16]

    Gökçe M C, Baykal Y, Ata Y 2018 Opt. Commun. 427 573Google Scholar

    [17]

    Baykal Y 2006 J. Opt. Soc. Am. A 23 889Google Scholar

    [18]

    Cui L Y, Xue B X, Zhou F G 2015 Opt. Express 23 30088Google Scholar

    [19]

    Ata Y, Baykal Y 2018 Chin. Opt. Lett. 16 080102Google Scholar

    [20]

    Thorpe S A 2005 The Turbulent Ocean (Oxford: Cambridge University Press) p25

    [21]

    Baykal Y 2018 J. Mod. Opt. 65 825Google Scholar

    [22]

    Baykal Y 2016 Appl. Opt. 55 1228Google Scholar

    [23]

    Wang S J, Baykal Y, Plonus M A 1983 J. Opt. Soc. Am. 73 831Google Scholar

    [24]

    Simon M K, Alouini M S 1998 Proc. IEEE 86 1860Google Scholar

    [25]

    柯熙政, 邓莉君 2016 无线光通信(北京: 科学出版社)第107−109页

    Ke X Z, Deng L J 2016 Wireless Optical Communication (Beijing: Science Press) pp107−109 (in Chinese)

    [26]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham, Washington USA: SPIE Press) pp450−454

    [27]

    郑晓桐, 郭立新, 程明建, 李江挺 2018 物理学报 67 214206Google Scholar

    Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206Google Scholar

    [28]

    Cui L Y, Cao L 2015 Optik 126 4704Google Scholar

  • 图 1  不同的${\mu _y}$, 误码率BER随${\mu _x}$的变化曲线

    Fig. 1.  BER versus anisotropy factor in the x direction for various anisotropy factor values in the y direction.

    图 2  不同的$w$时, 误码率BER随${\mu _x}$的变化曲线

    Fig. 2.  BER versus the anisotropy factor in the x direction for different values of$w$.

    图 3  不同的${\chi _{\rm{T}}}$时, 误码率BER随${\mu _x}$的变化曲线

    Fig. 3.  BER versus the anisotropy factor in the x direction for different values of ${X_{\rm{T}}}$.

    图 4  不同的$\nu $时, 误码率BER随${\mu _x}$的变化曲线

    Fig. 4.  BER versus the anisotropy factor in the x direction for various the kinematic viscosity$\nu $.

    图 5  不同的${\mu _x},{\mu _y}$时, 误码率BER随着$\varepsilon $的变化曲线

    Fig. 5.  BER versus the kinetic energy dissipation rate per unit fluid mass$\varepsilon $for various anisotropy factor values in the x and y directions.

    图 6  不同的${\mu _x},{\mu _y}$时, 误码率随APD平均增益的变化曲线

    Fig. 6.  BER versus average APD gain for different anisotropy factor values in the x and y directions.

    图 7  不同的调制阶数M时, 误码率BER随着${\mu _x}$的变化曲线

    Fig. 7.  BER versus the anisotropy factor in the x direction for various PPM order M.

    图 8  BER随比特率与各向因子的变化曲线

    Fig. 8.  BER under different bit rate and anisotropy factor in the x direction.

    图 9  误码率BER随传输距离和各向异性因子的变化曲线

    Fig. 9.  BER under different propagation distance and anisotropy factor in the x direction.

  • [1]

    Nikishov V V, Nikishov V I 2000 Int. J. Fluid Mech. Res. 27 82Google Scholar

    [2]

    Kiasaleh K 2005 IEEE Trans. Commun. 53 1455Google Scholar

    [3]

    Gappmair W, Muhammad S S 2007 Electron. Lett. 43 302Google Scholar

    [4]

    Gappmair W, Muhammad S S 2007 Electron. Lett. 43 880Google Scholar

    [5]

    Yi X, Liu Z J, Yue P, Shang T 2010 6th International Conference on Wireless Communications Networking and Mobile Computing Chengdu, China, September 23−25, 2010 p1

    [6]

    Gappmair W, Hranilovic S, Leitgeb E 2010 IEEE Commun. Lett. 14 468Google Scholar

    [7]

    Saidi H, Tourki K, Hamdi N 2016 International Symposium on Signal, Image, Video and Communications Tunis, Tunisia, November 21—23, 2016 p207

    [8]

    Barua B, Hossain M M 2012 15th International Conference on Computer and Information Technology Chittagong, Bangladesh, December 22−24, 2012 p295

    [9]

    Arpali S A, Baykal Y, Arpali Ç 2016 J. Mod. Opt. 63 1297

    [10]

    Gerçekcioğlu H 2014 J. Opt. Soc. Am. A 31 1963Google Scholar

    [11]

    Yousefi M, Golmohammady S, Mashal A, Kashani F D 2015 J. Opt. Soc. Am. A 32 1982Google Scholar

    [12]

    Yi X, Li Z, Liu Z 2015 Appl. Opt. 54 1273Google Scholar

    [13]

    Ata Y, Baykal Y 2018 Appl. Opt. 57 2258Google Scholar

    [14]

    Baykal Y 2018 J. Opt. Soc. Am. A 35 1627Google Scholar

    [15]

    Peppas K P, Boucouvalas A C, Ghassemlooy Z 2017 IET Optoelectron. 11 180Google Scholar

    [16]

    Gökçe M C, Baykal Y, Ata Y 2018 Opt. Commun. 427 573Google Scholar

    [17]

    Baykal Y 2006 J. Opt. Soc. Am. A 23 889Google Scholar

    [18]

    Cui L Y, Xue B X, Zhou F G 2015 Opt. Express 23 30088Google Scholar

    [19]

    Ata Y, Baykal Y 2018 Chin. Opt. Lett. 16 080102Google Scholar

    [20]

    Thorpe S A 2005 The Turbulent Ocean (Oxford: Cambridge University Press) p25

    [21]

    Baykal Y 2018 J. Mod. Opt. 65 825Google Scholar

    [22]

    Baykal Y 2016 Appl. Opt. 55 1228Google Scholar

    [23]

    Wang S J, Baykal Y, Plonus M A 1983 J. Opt. Soc. Am. 73 831Google Scholar

    [24]

    Simon M K, Alouini M S 1998 Proc. IEEE 86 1860Google Scholar

    [25]

    柯熙政, 邓莉君 2016 无线光通信(北京: 科学出版社)第107−109页

    Ke X Z, Deng L J 2016 Wireless Optical Communication (Beijing: Science Press) pp107−109 (in Chinese)

    [26]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (Bellingham, Washington USA: SPIE Press) pp450−454

    [27]

    郑晓桐, 郭立新, 程明建, 李江挺 2018 物理学报 67 214206Google Scholar

    Zheng X T, Guo L X, Cheng M J, Li J T 2018 Acta Phys. Sin. 67 214206Google Scholar

    [28]

    Cui L Y, Cao L 2015 Optik 126 4704Google Scholar

计量
  • 文章访问数:  8199
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-29
  • 修回日期:  2019-05-07
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回