搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程

陈撷宇 牟茂淋 苏春燕 陈少永 唐昌建

HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程

陈撷宇, 牟茂淋, 苏春燕, 陈少永, 唐昌建
PDF
HTML
导出引用
  • 利用MARS-F代码在HL-2A装置下模拟等离子体对共振磁扰动的线性响应过程, 研究了等离子体旋转频率对响应的影响. 研究发现, 扰动场在有理面上的屏蔽效应在旋转频率较大时随旋转增大而增强, 但在旋转频率较小时电阻导致的屏蔽效果最强处较有理面的偏移会影响这一规律; 扰动场在非有理面上的放大效应主要由芯部扭曲响应引起, 且同时与等离子体旋转频率和电阻密切相关.
      通信作者: 牟茂淋, mlmou@scu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11905152, 11775154)和四川大学专职博士后研发基金(批准号: 2020SCU12068)资助的课题
    [1]

    Evans T E, Moyer R A, Watkins J G, Osborne T H, Thomas P R, Bécoulet M, Boedo J A, Doyle E J, Fenstermacher M E, Finken K H, Groebner R J, Groth M, Harris J H, Jackson G L, LaHaye R J, Lasnier C J, Masuzaki S, Ohyabu N, Pretty G L, Reimerdes H, Rhodes T L, Rudakov D L, Schaffer M J, Wade M, Wang G 2004 Phys. Rev. Lett. 92 235003

    [2]

    Kirk A, Nardon E, Akers R, Bécoulet M, Temmerman G De, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P 2010 Nucl. Fusion 50 034008

    [3]

    Kirk A, Liu Yueqiang, Nardon E, Tamain P, Cahyna P, Chapman I, Denner P, Meyer H, Mordijck S, Temple D 2011 Plasma Phys. Controlled Fusion 53 065011

    [4]

    Liang Y, Koslowski H R, Thomas P R, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Becoulet M 2007 Phys. Rev. Lett. 98 265004

    [5]

    Suttrop W, Eich T, Fuchs J C, Günter S, Janzer A, Herrmann A, Kallenbach A, Lang P T, Lunt T, Maraschek M, McDermott R M, Mlynek A, Pütterich T, Rott M, Vierle T, Wolfrum E, Yu Q, Zammuto I, Zohm H 2011 Phys. Rev. Lett. 106 225004

    [6]

    Jeon Y M, Park J K, Yoon S W, Ko W H, Lee S G, Lee K D, Yun G S, Nam Y U, Kim W C, Kwak Jong Gu, Lee K S, Kim H K, Yang H L 2012 Phys. Rev. Lett. 109 035004

    [7]

    Sun Y, Liang Y, Liu Y Q, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D 2016 Phys. Rev. Lett. 117 115001

    [8]

    Liu Y Q, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y W, Suttrop W, Yang X, Zhou L N 2016 Plasma Phys. Controlled Fusion 58 114005

    [9]

    Liu Y, Kirk A, Li L, In Y, Nazikian R, Sun Y W, Suttrop W, Lyons B, Ryan D, Wang S, Yang X, Zhou L N 2017 Phys. Plasmas 24 056111

    [10]

    Fitzpatrick, Richard 2014 Phys. Plasmas 21 092513

    [11]

    Becoulet M, Huysmans G, Garbet X, Nardon E, Howell D, Garofalo A, Schaffer M, Evans T, Shaing K, Cole A, Park J K, Cahyna P 2009 Nucl. Fusion 49 085011

    [12]

    Liu Y, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502

    [13]

    Kirk A, Liu Y Q, Martin R, Cunningham G, Howell D 2014 Plasma Phys. Controlled Fusion 56 104003

    [14]

    Ferraro N M 2012 Phys. Plasmas 19 056105

    [15]

    Ryan D A, Liu Y Q, Kirk A, Suttrop W, Dudson B, Dunne M, Fischer R, Fuchs J C, Garcia-Munoz M, Kurzan B, Piovesan P, Reinke M, Willensdorfer M 2015 Plasma Phys. Controlled Fusion 57 095008

    [16]

    Haskey S R, Lanctot M J, Liu Y Q, Hanson J M, Blackwell B D, Nazikian R 2014 Plasma Phys. Controlled Fusion 56 035005

    [17]

    Liu Y, Kirk A, Gribov Y, Gryaznevich M P, Hender T C, Nardon E 2011 Nucl. Fusion 51 083002

    [18]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681

    [19]

    Liu Y Q, Ryan D, Kirk A, Li Li, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M 2016 Nucl. Fusion 56 056015

    [20]

    Kirk A, Suttrop W, Chapman I T, Liu Yueqiang, Scannell R, Thornton A J, Orte L Barrera, Cahyna P, Eich T, Fischer R, Fuchs C, Ham C, Harrison J R, Jakubowski M W, Kurzan B 2015 Nucl. Fusion 55 043011

    [21]

    Li L, Liu Y Q, Kirk A, Wang N, Liang Y, Ryan D, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M, Zhong F C 2016 Nucl. Fusion 56 126007

    [22]

    Yang X, Sun Y W, Liu Y Q, Gu S, Liu Y, Wang H H, Zhou L N, Guo W F 2016 Plasma Phys. Controlled Fusion 58 114006

    [23]

    Reimerdes H, Bialek J, Chance M S, Chu M S, Garofalo A M, Gohil P, In Y, Jackson G L, Jayakumar R J, Jensen T H, Kim J S, Haye R J La, Liu Y Q, Menard J E, Navratil G A, Okabayashi M 2005 Nucl. Fusion 45 368

    [24]

    Gryaznevich M P, Hender T C, Howell D F, Challis C D, Koslowski H R, Gerasimov S, Joffrin E, Liu Y Q, Saarelma S 2008 Plasma Phys. Controlled Fusion 50 124030

    [25]

    Haskey S R, Lanctot M J, Liu Y Q, Paz-Soldan C, King J D, Blackwell B D, Schmitz O 2015 Plasma Phys. Controlled Fusion 57 025015

    [26]

    Liu Y, Saarelma S, Gryaznevich M P, Hender T C, Howell D F 2010 Plasma Phys. Controlled Fusion 52 045011

    [27]

    Kim J Y, Kim S S, Jhang H 2016 Phys. Plasmas 23 092502

  • 图 1  HL-2A最外闭合磁面(红线)和RMP线圈位置(蓝线)

    Fig. 1.  The location and size of the RMP coils in HL-2A shown on the poloidal plane together with the last closed flux surface.

    图 2  HL-2A等离子体平衡的径向剖面 (a)归一化密度; (b)安全因子; (c)归一化等离子体环向旋转; (d)归一化等离子体电阻率

    Fig. 2.  The radial profiles of the plasma equilibrium used in this study: (a) The normalized density; (b) the safety factor; (c) the plasma toroidal rotation, normalized to the Alfven frequency at the plasma centre; (d) the normalized plasma resistivity (vertical lines indicate the radial locations of rational surfaces for q = 2, 3, 4).

    图 3  奇宇称时(a)真空径向场与(b)总径向场的极向谱

    Fig. 3.  Comparison of the poloidal spectra in the full plasma region, between (a) The vacuum field and (b) the total field including the plasma response, for the odd parity of the coil current.

    图 4  奇宇称时等离子体径向位移的极向傅里叶分量幅值沿极向磁通的变化

    Fig. 4.  Radial profiles of poloidal harmonic of the computed plasma normal displacement triggered by the odd parity coils.

    图 5  理想等离子体响应($ {\eta }_{0}=0 $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置

    Fig. 5.  The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in ideal plasma response $ ({\eta }_{0}=0) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.

    图 6  电阻等离子体响应($ {\eta }_{0}=1.7524\times {10}^{-8} $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置

    Fig. 6.  The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in resistive plasma response $ ({\eta }_{0}=1.7524\times {10}^{-8}) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.

    图 7  不同电阻值下有理面上总径向场幅值随旋转频率的变化 (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. 图中绿色虚线代表真空场条件下对应分量在有理面上的幅值

    Fig. 7.  The amplitude of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field on the rational surfaces with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. The green dashed lines are the corresponding amplitude of the resonant poloidal Fourier harmonics produced by RMP coils on the rational surfaces.

    图 8  不同电阻值下总径向场的极向傅里叶分量最大值随旋转频率的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的最大值

    Fig. 8.  The maximal amplitude of the poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding maximal amplitude of the poloidal Fourier harmonics produced by RMP coils.

    图 9  不同电阻值下等离子体边缘剥离响应(peeling)和芯部扭曲响应(kink)随旋转频率的变化

    Fig. 9.  The computed amplitude of the core-kink (blue dashed lines) and the edge-peeling (red solid lines) components of the plasma response with varying plasma toroidal rotation frequency and resistivity.

  • [1]

    Evans T E, Moyer R A, Watkins J G, Osborne T H, Thomas P R, Bécoulet M, Boedo J A, Doyle E J, Fenstermacher M E, Finken K H, Groebner R J, Groth M, Harris J H, Jackson G L, LaHaye R J, Lasnier C J, Masuzaki S, Ohyabu N, Pretty G L, Reimerdes H, Rhodes T L, Rudakov D L, Schaffer M J, Wade M, Wang G 2004 Phys. Rev. Lett. 92 235003

    [2]

    Kirk A, Nardon E, Akers R, Bécoulet M, Temmerman G De, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P 2010 Nucl. Fusion 50 034008

    [3]

    Kirk A, Liu Yueqiang, Nardon E, Tamain P, Cahyna P, Chapman I, Denner P, Meyer H, Mordijck S, Temple D 2011 Plasma Phys. Controlled Fusion 53 065011

    [4]

    Liang Y, Koslowski H R, Thomas P R, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Becoulet M 2007 Phys. Rev. Lett. 98 265004

    [5]

    Suttrop W, Eich T, Fuchs J C, Günter S, Janzer A, Herrmann A, Kallenbach A, Lang P T, Lunt T, Maraschek M, McDermott R M, Mlynek A, Pütterich T, Rott M, Vierle T, Wolfrum E, Yu Q, Zammuto I, Zohm H 2011 Phys. Rev. Lett. 106 225004

    [6]

    Jeon Y M, Park J K, Yoon S W, Ko W H, Lee S G, Lee K D, Yun G S, Nam Y U, Kim W C, Kwak Jong Gu, Lee K S, Kim H K, Yang H L 2012 Phys. Rev. Lett. 109 035004

    [7]

    Sun Y, Liang Y, Liu Y Q, Gu S, Yang X, Guo W, Shi T, Jia M, Wang L, Lyu B, Zhou C, Liu A, Zang Q, Liu H, Chu N, Wang H H, Zhang T, Qian J, Xu L, He K, Chen D 2016 Phys. Rev. Lett. 117 115001

    [8]

    Liu Y Q, Ham C J, Kirk A, Li L, Loarte A, Ryan D A, Sun Y W, Suttrop W, Yang X, Zhou L N 2016 Plasma Phys. Controlled Fusion 58 114005

    [9]

    Liu Y, Kirk A, Li L, In Y, Nazikian R, Sun Y W, Suttrop W, Lyons B, Ryan D, Wang S, Yang X, Zhou L N 2017 Phys. Plasmas 24 056111

    [10]

    Fitzpatrick, Richard 2014 Phys. Plasmas 21 092513

    [11]

    Becoulet M, Huysmans G, Garbet X, Nardon E, Howell D, Garofalo A, Schaffer M, Evans T, Shaing K, Cole A, Park J K, Cahyna P 2009 Nucl. Fusion 49 085011

    [12]

    Liu Y, Kirk A, Nardon E 2010 Phys. Plasmas 17 122502

    [13]

    Kirk A, Liu Y Q, Martin R, Cunningham G, Howell D 2014 Plasma Phys. Controlled Fusion 56 104003

    [14]

    Ferraro N M 2012 Phys. Plasmas 19 056105

    [15]

    Ryan D A, Liu Y Q, Kirk A, Suttrop W, Dudson B, Dunne M, Fischer R, Fuchs J C, Garcia-Munoz M, Kurzan B, Piovesan P, Reinke M, Willensdorfer M 2015 Plasma Phys. Controlled Fusion 57 095008

    [16]

    Haskey S R, Lanctot M J, Liu Y Q, Hanson J M, Blackwell B D, Nazikian R 2014 Plasma Phys. Controlled Fusion 56 035005

    [17]

    Liu Y, Kirk A, Gribov Y, Gryaznevich M P, Hender T C, Nardon E 2011 Nucl. Fusion 51 083002

    [18]

    Liu Y Q, Bondeson A, Fransson C M, Lennartson B, Breitholtz C 2000 Phys. Plasmas 7 3681

    [19]

    Liu Y Q, Ryan D, Kirk A, Li Li, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M 2016 Nucl. Fusion 56 056015

    [20]

    Kirk A, Suttrop W, Chapman I T, Liu Yueqiang, Scannell R, Thornton A J, Orte L Barrera, Cahyna P, Eich T, Fischer R, Fuchs C, Ham C, Harrison J R, Jakubowski M W, Kurzan B 2015 Nucl. Fusion 55 043011

    [21]

    Li L, Liu Y Q, Kirk A, Wang N, Liang Y, Ryan D, Suttrop W, Dunne M, Fischer R, Fuchs J C, Kurzan B, Piovesan P, Willensdorfer M, Zhong F C 2016 Nucl. Fusion 56 126007

    [22]

    Yang X, Sun Y W, Liu Y Q, Gu S, Liu Y, Wang H H, Zhou L N, Guo W F 2016 Plasma Phys. Controlled Fusion 58 114006

    [23]

    Reimerdes H, Bialek J, Chance M S, Chu M S, Garofalo A M, Gohil P, In Y, Jackson G L, Jayakumar R J, Jensen T H, Kim J S, Haye R J La, Liu Y Q, Menard J E, Navratil G A, Okabayashi M 2005 Nucl. Fusion 45 368

    [24]

    Gryaznevich M P, Hender T C, Howell D F, Challis C D, Koslowski H R, Gerasimov S, Joffrin E, Liu Y Q, Saarelma S 2008 Plasma Phys. Controlled Fusion 50 124030

    [25]

    Haskey S R, Lanctot M J, Liu Y Q, Paz-Soldan C, King J D, Blackwell B D, Schmitz O 2015 Plasma Phys. Controlled Fusion 57 025015

    [26]

    Liu Y, Saarelma S, Gryaznevich M P, Hender T C, Howell D F 2010 Plasma Phys. Controlled Fusion 52 045011

    [27]

    Kim J Y, Kim S S, Jhang H 2016 Phys. Plasmas 23 092502

  • [1] 龚学余, 彭晓炜, 谢安平, 刘文艳. 托卡马克等离子体不同运行模式下的电子回旋波电流驱动. 物理学报, 2006, 55(3): 1307-1314. doi: 10.7498/aps.55.1307
    [2] 卢洪伟, 胡立群, 林士耀, 钟国强, 周瑞杰, 张继宗. HT-7托卡马克等离子体slide-away放电研究. 物理学报, 2010, 59(8): 5596-5601. doi: 10.7498/aps.59.5596
    [3] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [4] 卢洪伟, 查学军, 胡立群, 林士耀, 周瑞杰, 罗家融, 钟方川. HT-7托卡马克slide-away放电充气对等离子体行为的影响. 物理学报, 2012, 61(7): 075202. doi: 10.7498/aps.61.075202
    [5] 杜海龙, 桑超峰, 王亮, 孙继忠, 刘少承, 汪惠乾, 张凌, 郭后扬, 王德真. 东方超环托卡马克高约束模式边界等离子体输运数值模拟研究. 物理学报, 2013, 62(24): 245206. doi: 10.7498/aps.62.245206
    [6] 张先梅, 万宝年, 阮怀林, 吴振伟. HT-7托卡马克等离子体欧姆放电时电子热扩散系数的研究. 物理学报, 2001, 50(4): 715-720. doi: 10.7498/aps.50.715
    [7] 王文浩, 俞昌旋, 许宇鸿, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边界等离子体参量及其涨落的实验研究. 物理学报, 2001, 50(8): 1521-1527. doi: 10.7498/aps.50.1521
    [8] 徐 伟, 万宝年, 谢纪康. HT-6M托卡马克装置杂质输运. 物理学报, 2003, 52(8): 1970-1978. doi: 10.7498/aps.52.1970
    [9] 徐强, 高翔, 单家方, 胡立群, 赵君煜. HT-7托卡马克大功率低混杂波电流驱动的实验研究. 物理学报, 2009, 58(12): 8448-8453. doi: 10.7498/aps.58.8448
    [10] 洪斌斌, 陈少永, 唐昌建, 张新军, 胡有俊. 托卡马克中电子回旋波与低杂波协同驱动的物理研究. 物理学报, 2012, 61(11): 115207. doi: 10.7498/aps.61.115207
    [11] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究. 物理学报, 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [12] 钟国强, 胡立群, 朱玉宝, 林士耀, 陈珏铨, 许平, 段艳敏, 卢洪伟. HT-7上氘等离子体放电时中子注量的测量与分析. 物理学报, 2009, 58(5): 3262-3267. doi: 10.7498/aps.58.3262
    [13] 石秉仁. 托卡马克低混杂波电流驱动实验中低混杂波传播的解析分析. 物理学报, 2000, 49(12): 2394-2398. doi: 10.7498/aps.49.2394
    [14] 王文浩, 许宇鸿, 俞昌旋, 闻一之, 凌必利, 宋梅, 万宝年. HT-7超导托卡马克边缘涨落谱特征及湍流输运研究. 物理学报, 2001, 50(10): 1956-1963. doi: 10.7498/aps.50.1956
    [15] 章太阳, 陈冉. 东方超环(EAST)装置中等离子体边界锂杂质的碰撞-辐射模型. 物理学报, 2017, 66(12): 125201. doi: 10.7498/aps.66.125201
    [16] 吴雪科, 孙小琴, 刘殷学, 李会东, 周雨林, 王占辉, 冯灏. 超声分子束注入密度和宽度对托克马克装置加料深度的影响. 物理学报, 2017, 66(19): 195201. doi: 10.7498/aps.66.195201
    [17] 郑永真, 齐昌炜, 丁玄同, 郦文忠. 托卡马克等离子体中内部磁扰动的测量研究. 物理学报, 2006, 55(1): 294-298. doi: 10.7498/aps.55.294
    [18] 刘才根, 钱尚介, 万华明. 电子回旋波驱动的托卡马克芯部等离子体极向旋转. 物理学报, 1998, 47(9): 1515-1519. doi: 10.7498/aps.47.1515
    [19] 吴京生, 夏蒙棼, 周如玲, 康寿万, 蔡诗东. 托卡马克中等离子体频率附近的增强辐射现象. 物理学报, 1980, 29(1): 46-53. doi: 10.7498/aps.29.46
    [20] 刘胜侠. HT-6M托卡马克离子回旋共振频率加热电荷交换能谱的分析. 物理学报, 1995, 44(1): 152-156. doi: 10.7498/aps.44.152
  • 引用本文:
    Citation:
计量
  • 文章访问数:  278
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-09
  • 修回日期:  2020-06-02
  • 上网日期:  2020-06-16
  • 刊出日期:  2020-10-05

HL-2A中环向旋转影响等离子体对共振磁扰动的响应过程

  • 1. 四川大学物理学院, 成都 610065
  • 2. 四川大学高能量密度物理及技术教育部重点实验室, 成都 610065
  • 通信作者: 牟茂淋, mlmou@scu.edu.cn
    基金项目: 国家自然科学基金(批准号: 11905152, 11775154)和四川大学专职博士后研发基金(批准号: 2020SCU12068)资助的课题

摘要: 利用MARS-F代码在HL-2A装置下模拟等离子体对共振磁扰动的线性响应过程, 研究了等离子体旋转频率对响应的影响. 研究发现, 扰动场在有理面上的屏蔽效应在旋转频率较大时随旋转增大而增强, 但在旋转频率较小时电阻导致的屏蔽效果最强处较有理面的偏移会影响这一规律; 扰动场在非有理面上的放大效应主要由芯部扭曲响应引起, 且同时与等离子体旋转频率和电阻密切相关.

English Abstract

    • 共振磁扰动 (resonant magnetic perturbation, RMP)由托卡马克外加磁扰动线圈产生, 是一种用于控制等离子体边缘局域模(edge localized mode, ELM)的重要手段. DIII-D[1], MAST[2,3], JET[4], ASDEX Upgrade[5,6], EAST[7]等装置上的实验均表明RMP可以有效缓解/抑制ELM, 但其对ELM缓解/抑制的内在物理机理并不完全清楚, 因此, 托卡马克RMP物理是当前研究的重点问题之一. 等离子体对RMP的响应, 是理解RMP物理的关键[8]. 由于RMP的作用, 托卡马克中磁场的环向对称性将被破坏, 形成新的三维平衡, 这个形成新三维平衡的过程被称作等离子体对RMP的响应.

      当前, 国内外不同装置上利用RMP控制ELM的参数范围和控制效果都有较大差别[1-7], 说明等离子体对RMP的响应在不同装置不同参数区间内具有不同的响应结果, 因此, 有必要针对特定装置研究其RMP响应特性. 本文将针对我国第一个具有偏滤器位形的大型托卡马克装置HL-2A进行等离子体对RMP响应的模拟研究. 已有的关于HL-2A装置的模拟发现, RMP对ELM的缓解存在$ {q}_{95} $(极向磁通为95%处的安全因子)窗口, 且上下线圈电流相位差为180°时等离子体对RMP的响应最强烈[9], 此外, RMP响应过程会导致等离子体旋转降低[10,11], 但旋转的大小也会反过来影响等离子体对RMP的响应. 已有学者研究了等离子体环向流对响应的影响, 发现随旋转频率增加, 等离子体对扰动场的屏蔽效应[12-14] (指扰动场的共振分量在有理面上激发的感应电流产生的磁场与外加扰动场相抵消, 使得有理面上的总径向场减小的现象)增强, 放大效应[15-17] (指扰动场的非共振分量激发的近稳定模式产生的扰动电流, 使得非有理面上的总径向场增大的现象)减弱. 但在实验中, 等离子体电阻率会随实验条件发生变化, 而旋转对等离子体响应的作用规律也会随之发生变化, 因此, 本文针对HL-2A装置重点研究了考虑电阻变化时等离子体旋转对响应的影响.

      本文内容安排如下, 第2节介绍了模拟使用的物理模型及平衡位形, 第3节为等离子体响应随环向旋转变化的模拟结果及分析, 最后一部分进行了总结与讨论.

    • 本文利用MARS-F[17,18]代码模拟等离子体对RMP的线性响应过程. MARS-F可在真实等离子体位形下求解线性磁流体方程, 其模拟结果的准确性已在与HL-2A, MAST等诸多装置的实验对比中得到很好的验证[8,9,17]. 代码中的物理模型如下:

      对于等离子体区域,

      $ \begin{split} &{\rm{i}}\left({\varOmega }_{{\rm{R}}{\rm{M}}{\rm{P}}}+n\varOmega \right){{\xi }}={{v}}+\left({{\xi }}\cdot\nabla \varOmega \right)R\widehat{{{\phi }}}, \end{split}$

      $ \begin{split} {\rm{i}}\rho \left( {\varOmega }_{{\rm{R}}{\rm{M}}{\rm{P}}}+n\varOmega \right){{v}} = -\nabla p + {{j}} \times {{B}} + {{J}} \times {{b}} \\ -\rho \left[2\varOmega \widehat{{Z}}\times {{v}}+\left({{v}}\cdot\nabla \varOmega \right)R\widehat{{{\phi }}}\right] \\ -\rho {\kappa }_{\parallel }\left|{k}_{\parallel } {v}_{{\rm{t}}{\rm{h}},{\rm{i}}}\right|{\left[{{v}}+\left({{\xi }}\cdot\nabla \right){{V}}_{0}\right]}_{\parallel }, \end{split} $

      $\begin{split} & {\rm{i}}\left({\varOmega }_{{\rm{R}}{\rm{M}}{\rm{P}}}+n\varOmega \right){{b}} \\ ={}& \nabla \times \left({{v}} \times {{B}}\right)+\left({{b}}\cdot\nabla \varOmega \right)R\widehat{{{\phi }}}-\nabla\times \left(\eta {{j}}\right), \end{split}$

      $ {\rm{i}}\left({\varOmega }_{{\rm{R}}{\rm{M}}{\rm{P}}} +n\varOmega \right)p=-v\cdot\nabla P-\varGamma P\nabla ·{{v}}{,} $

      $ {{j}}=\nabla \times {{b}}{,} $

      对于RMP线圈, 当作电流源处理,

      $ \nabla \times {{b}}={{{j}}}_{{\rm{R}}{\rm{M}}{\rm{P}}} ,\; \nabla ·{{{j}}}_{{\rm{R}}{\rm{M}}{\rm{P}}}=0. $

      对于真空区域,

      $ \nabla \times {{b}}=0, \nabla ·{{b}}=0{.} $

      其中, $ {\varOmega }_{{\rm{R}}{\rm{M}}{\rm{P}}} $表示RMP旋转频率, n是环向模数, $ {{V}}_{0}=R\varOmega \widehat{{{\phi }}} $是环向流速, R是等离子体大半经, $ \varOmega $是等离子体环向旋转频率, $ \widehat{{{\phi }}} $是几何环向角$ \phi $的单位矢量, $ \widehat{{Z}} $是极向截面内竖直方向的单位矢量; $ {{\xi }} $, v, b, jp分别表示等离子体的扰动位移、扰动速度、扰动磁场、扰动电流密度和扰动压强; B, J, P$ \rho $分别表示等离子体的平衡磁场、平衡电流密度、平衡压强和平衡等离子体密度; $ \eta $为等离子体电阻, $ \varGamma $ = 5/3表示绝热系数, ${k}_{/\!/}=\left(n-m/q\right)/R$是平行波数, 其中m是极向模数, q是安全因子; $ {v}_{{\rm{t}}{\rm{h}}, {\rm{i}}}=\sqrt{2{T}_{{\rm{i}}}/{M}_{{\rm{i}}}} $是热离子速度, $ {T}_{{\rm{i}}} $$ {M}_{{\rm{i}}} $分别是热离子的温度和质量; $ {\kappa }_{\parallel } $是阻尼系数. 此方程组中的磁场、位移、速度、压强、时间均为无量纲的量, 其无量纲因子分别为$ {B}_{0}, {R}_{0}, {v}_{{\rm{A}}}, {{B}_{0}^{2}}/{{\mu }_{0}}, {\tau }_{{\rm{A}}} $, 其中$ {B}_{0} $为磁轴处的环向磁场, $ {R}_{0} $为大半经, $ {v}_{{\rm{A}}}={B}_{0}/\sqrt{{\mu }_{0}{\rho }_{0}} $为环向Alfvén速度, $ {\mu }_{0} $为真空磁导率, $ {\tau }_{{\rm{A}}}={R}_{0}/{v}_{{\rm{A}}} $为Alfvén时间. 模拟中, 取${\kappa }_{/\!/}=1.5$, 表示强声波阻尼. 前人的研究表明[19], 相比于弱声波阻尼(${\kappa }_{/\!/ }\ll 1)$, 较强的声波阻尼(${\kappa }_{/\!/}=1.5$)会在等离子体中心区域降低扭曲模响应, 对等离子体边界影响很小, 是对标准MHD方程的动力学修正.

      模拟使用HL-2A上具有H模放电实验中典型的等离子体平衡作为研究对象, 对应的平衡基本参数为: 大半径$ {R}_{0}=1.65 \;{\rm{m}} $, 磁轴处磁感应强度$ {B}_{0}=1.38 \;{\rm{T}} $, 归一化比压$ {\beta }_{N}=1.48 $, 等离子体电流$ {I}_{{\rm{P}}}=146.1\;{\rm{kA}} $. HL-2A中的RMP线圈包含上下两组, 每组线圈包含两个环向对称的线圈, 线圈安装位置为弱场侧中平面窗口与上下窗口之间, 位置如图1所示. 线圈尺寸为420 mm × 260 mm, 电流大小为4.5 kA, 该RMP线圈主要包含n = 1, 3, 5, 7的环向分量, 对应电流幅值分别为284, 280, 273和262 A. 已有研究[9]表明, $ n=1 $的扰动电流分量对等离子体响应的影响最大, 故本文仅讨论等离子体对$ n=1 $的扰动电流分量产生的扰动磁场的响应情况. 图2为HL-2A中的等离子体平衡径向剖面, $ {\psi }_{{\rm{p}}}^{1/2} $表示归一化小半径, 黑色竖直虚线为q = 2, 3, 4的有理面的径向位置. 图2(a)为对实验测量数据进行拟合得到的归一化等离子体密度, 其中磁轴处等离子体密度${\rho _0} = 8.92 \times {10^{ - 8}}\;{\rm{kg}} \cdot {{\rm{m}}^{ - 3}}$. 图2(b)为通过平衡代码计算得到的安全因子剖面, 其中, $ {q}_{{\rm{m}}{\rm{i}}{\rm{n}}} $ = 1.30(芯部安全因子), $ {q}_{95} $ = 3.91, $ {q}_{{\rm{e}}{\rm{d}}{\rm{g}}{\rm{e}}} $ = 4.90(边缘安全因子). 图2(c)为拟合实验测量数据并对旋转剖面做平滑处理得到的等离子体环向旋转的归一化径向剖面, 其旋转频率幅值由Alfvén频率$ {\omega }_{{\rm{A}}}=2.499\times {10}^{6}\;{\rm{Hz}} $归一化. 图2(d)为归一化电阻率$ \eta $的径向剖面, $ \eta =1/{\rm{S}} $, S为伦奎斯特数, 模拟中采用斯必泽(Spitzer)电阻模型, 等离子体电阻率$ \eta ={\eta }_{1}{\left[{T}_{{\rm{e}}}/{T}_{{\rm{e}}}\left(0\right)\right]}^{-3/2} $, $ {T}_{{\rm{e}}} $是热电子温度, $ {T}_{{\rm{e}}}\left(0\right) $为磁轴处的热电子温度, $ {\eta }_{1}={\eta }_{0}/{\left({R}_{0}/a\right)}^{2} $代表等离子体芯部电阻率的幅值, $ {R}_{0} $为大半经, a为小半径. 电阻率剖面由$ {{T}_{{\rm{e}}}}^{-3/2} $的剖面决定, 电阻率幅值可通过设置$ {\eta }_{0} $的值来确定. 图2(d)中取$ {\eta }_{0}=1.7524\times {10}^{-8} $, S的取值范围约为$ 1.25\times {10}^{7}- 1.25\times {10}^{9} $.

      图  1  HL-2A最外闭合磁面(红线)和RMP线圈位置(蓝线)

      Figure 1.  The location and size of the RMP coils in HL-2A shown on the poloidal plane together with the last closed flux surface.

      图  2  HL-2A等离子体平衡的径向剖面 (a)归一化密度; (b)安全因子; (c)归一化等离子体环向旋转; (d)归一化等离子体电阻率

      Figure 2.  The radial profiles of the plasma equilibrium used in this study: (a) The normalized density; (b) the safety factor; (c) the plasma toroidal rotation, normalized to the Alfven frequency at the plasma centre; (d) the normalized plasma resistivity (vertical lines indicate the radial locations of rational surfaces for q = 2, 3, 4).

    • 在托卡马克中, 平衡磁场的径向分量几乎为零, 而扰动线圈产生的磁场主要为径向磁场, 所以通过径向磁场$ {b}^{1} $的变化来反映等离子体对RMP的响应情况[20-22]. 定义总磁场的径向分量为$ {b}^{1} $, 文中总磁场指RMP产生的真空磁场与等离子体响应产生的磁场总和. $ {b}^{1} $的定义为

      $ {b}^{1}\equiv \frac{J}{{R}_{0}^{2}}{{b}}\cdot \nabla {\rm{s}}=\frac{{J}_{{\rm{s}}}}{{R}_{0}^{2}}{b}_{n}{,} $

      其中, $ {J}_{{\rm{s}}}=J\left|\nabla s\right| $是表面雅可比, $ {b}_{n} $为扰动磁场的法向分量. $ {b}^{1} $的单位为高斯(1 G = 10–4 T), 本质上是扰动磁通函数, 其极向谐波在确定磁岛宽度时比法向分量$ {b}_{n} $更有实际意义. 图3给出了RMP上下线圈电流相位差为180°(奇宇称)时, 真空径向场与总径向场的极向谐波幅值在极向谐波数m和归一化小半径$ {\psi }_{{\rm{p}}}^{1/2} $平面的分布. m为负数的谐波代表非共振谐波, 有理面的位置($ q=m/n $)用红色“+”号表示. 在图3(a)所示的真空场极向谱中可以看到, RMP磁场在极向模数m的正负区间呈对称分布, 而沿着小半径方向呈现由边缘到芯部逐渐减弱的趋势. 对比图3(a)图3(b), 在共振区域(m > 0), 总径向场幅值在有理面附近相较于真空场明显减小, 发生屏蔽效应[12], 而在非有理面上的总径向场幅值相较于真空场则大大增加, 发生共振场放大效应(resonant field amplification, RFA)[23,24]; 在非共振区域(m < 0), 总径向场与真空场相比模谱形状几乎没有变化.

      图  3  奇宇称时(a)真空径向场与(b)总径向场的极向谱

      Figure 3.  Comparison of the poloidal spectra in the full plasma region, between (a) The vacuum field and (b) the total field including the plasma response, for the odd parity of the coil current.

      下面通过等离子体径向位移来分析HL-2A中等离子体对RMP响应的特征. 已有研究[9,15,16,25]认为, 等离子体对RMP的响应包含两种基本类型, 即芯部扭曲响应和边缘剥离响应. 芯部扭曲响应是指外加扰动场导致芯部等离子体产生径向位移的响应, 边缘剥离响应是指外加扰动场导致边缘等离子体产生径向位移的响应. 芯部扭曲响应幅值定义为, 在归一化平衡极向通量在$ 0{<\psi }_{{\rm{p}}}\equiv {s}^{2}< 0.5 $范围内($ {\psi }_{{\rm{p}}} $为极向磁通), 等离子体径向位移$ \left|{\xi }_{mn}^{1}\left({\psi }_{{\rm{p}}}\right)\right|\equiv {\left|\xi \cdot \nabla s\right|}_{mn} $的所有极向傅里叶谐波的最大值; 边缘剥离响应幅值定义为, 在$ 0.8<{\psi }_{{\rm{p}}}<1 $范围内, 等离子体径向位移的所有极向傅里叶谐波的最大值[9]. 图4为奇宇称时等离子体径向位移的极向傅里叶分量幅值, 图中靠近等离子体芯部的幅值在$ {\psi }_{{\rm{p}}}=0.44 $有最大值$ {\xi }_{m}^{1}=9.62\;{\rm{m}}{\rm{m}} $, 为m = 2的分量, 靠近等离子体边缘的幅值在$ {\psi }_{{\rm{p}}}=0.95 $处有最大值$ {\xi }_{m}^{1}=4.87\;{\rm{m}}{\rm{m}} $, 为m = 4的分量, 其边缘幅值最大值约为芯部的51%, 说明对于HL-2A装置, 芯部扭曲响应在等离子体响应中占主导.

      图  4  奇宇称时等离子体径向位移的极向傅里叶分量幅值沿极向磁通的变化

      Figure 4.  Radial profiles of poloidal harmonic of the computed plasma normal displacement triggered by the odd parity coils.

      接下来在奇宇称情况下研究等离子体环向旋转频率变化对等离子体响应的影响. 利用第二部分介绍的平衡, 在其他条件不变的情况下保持旋转剖面形状不变, 仅改变旋转频率大小. 对于理想等离子体响应($ {\eta }_{0}=0 $), 如图5所示, 不论旋转如何变化, 扰动场的各个极向傅里叶分量(m = 2, 3, 4)在对应有理面上都会发生明显屏蔽, 由于理想情况下有理面上已经基本对扰动场实现了完全屏蔽, 故增加旋转并不会进一步增强屏蔽效应; 但扰动场的极向傅里叶分量振幅的最大值随旋转增大而不断减小, 说明环向旋转会削弱等离子体响应的放大效应, 这主要是因为环向流对等离子体具有一定的致稳作用, 抑制了响应中不稳定性的增长从而使放大效应减弱[26].

      图  5  理想等离子体响应($ {\eta }_{0}=0 $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置

      Figure 5.  The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in ideal plasma response $ ({\eta }_{0}=0) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.

      对于非理想等离子体响应, 如图6所示, 对于不同极向模数的分量, 在旋转较大时(图中偏蓝色的线), 扰动场在有理面上具有较好的屏蔽, 但是, 随着旋转减小(图中偏红色的线), 扰动场屏蔽效果最强处的位置较有理面(竖直虚线处)会产生一定的偏移, 导致扰动场在有理面上的屏蔽效应减弱, 甚至有理面上的总径向场有可能大于真空场幅值; 同时, 旋转越小、越靠近等离子体边缘的有理面附近, 偏移越大. 这是因为环向旋转可以增强等离子体对扰动场的屏蔽效应, 当旋转足够大时, 旋转增强屏蔽的作用占主导, 电阻降低屏蔽的作用较弱[27]. 当旋转较小时, 旋转的屏蔽作用减弱, 电阻降低屏蔽的作用占主导, 电阻越大, 屏蔽效果最强处的位置较有理面的偏移越大, 有理面上的屏蔽效果越弱[12,27]. 在靠近等离子体边缘区域, 旋转频率较芯部更小, 而电阻值较芯部更大, 所以m = 4的分量的屏蔽效果最弱. 此外, 扰动场的极向傅里叶分量振幅的最大值随旋转增加呈现出先增大后减小的特征, 这与理想等离子体响应中的放大效应有所不同, 具体物理原因将结合图7, 图8图9做进一步分析.

      图  6  电阻等离子体响应($ {\eta }_{0}=1.7524\times {10}^{-8} $)时, 总径向场的极向傅里叶分量振幅在不同旋转频率下沿极向磁通的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的分布, 黑色竖直虚线分别代表q = 2, 3, 4的有理面的位置

      Figure 6.  The radial profiles of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency in resistive plasma response $ ({\eta }_{0}=1.7524\times {10}^{-8}) $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding external field components produced by RMP coils. The black dashed vertical lines indicate the resonant surfaces q = 2, 3, 4, respectively.

      图  7  不同电阻值下有理面上总径向场幅值随旋转频率的变化 (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. 图中绿色虚线代表真空场条件下对应分量在有理面上的幅值

      Figure 7.  The amplitude of the resonant poloidal Fourier harmonics of the total (external + plasma response) radial field on the rational surfaces with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) $ m/n $ = 2; (b) $ m/n $ = 3; (c) $ m/n $ = 4. The green dashed lines are the corresponding amplitude of the resonant poloidal Fourier harmonics produced by RMP coils on the rational surfaces.

      图  8  不同电阻值下总径向场的极向傅里叶分量最大值随旋转频率的变化 (a) m = 2; (b) m = 3; (c) m = 4. 图中绿色虚线代表真空场条件下对应分量的最大值

      Figure 8.  The maximal amplitude of the poloidal Fourier harmonics of the total (external + plasma response) radial field with varying plasma toroidal rotation frequency and $ {\eta }_{0} $: (a) m = 2; (b) m = 3; (c) m = 4. The green dashed lines are the corresponding maximal amplitude of the poloidal Fourier harmonics produced by RMP coils.

      对比图5图6可知, 理想等离子体响应中, 旋转的变化对有理面的屏蔽效应并没有产生明显影响, 而在包含电阻的等离子体响应中, 旋转的变化对屏蔽效果影响明显. 为了进一步观察有理面上径向场屏蔽效果与旋转和电阻的关系, 图7给出了不同电阻值下各有理面上总径向场随旋转变化的曲线. 在图7(a)中, $ m/n $ = 2的有理面上总径向场均明显小于真空场, 屏蔽效果较好; 且对于不同电阻值, 屏蔽效果均随旋转增大而增强, 当旋转增大到一定值时, 有理面上的磁场几乎被完全屏蔽. 而在图7(b)图7(c)中, 总径向场随旋转频率的变化呈现出先增加后减小的趋势, 且在同一有理面上, 电阻越大, 在旋转较小区域屏蔽效应随旋转增大而减弱的现象越明显. 由图6的分析可知, 在旋转频率较大而电阻较小时, 旋转增强屏蔽的作用占主导, $ m/n $ = 2的有理面更靠近等离子体芯部, 旋转较大, 电阻较小, 屏蔽效果最强处较有理面的偏移较小, 故主要体现出屏蔽效应随旋转增大而增强的特征. 而$ m/n $ = 3和4的有理面更靠近等离子体边缘, 旋转频率相对降低, 电阻相对增大. 在等离子体旋转较小时, 电阻降低屏蔽的作用占主导, 电阻越大, 屏蔽效果最强处的位置较有理面的偏移越大, 此时有理面处的扰动场幅值并不是屏蔽效果最强处的径向场幅值, 而是由于等离子体响应使扰动场放大后的幅值, 所以, 在旋转频率较小而电阻较大时, 总径向场随旋转频率增大而增加的现象来源于等离子体响应中的放大效应.

      通过对图5图6的分析发现, 在理想等离子体响应中, 扰动场的极向傅里叶分量振幅的最大值随旋转增大而减小; 但是, 在电阻等离子体响应中, 该最大值随旋转增加先增大后减小. 图8给出了不同电阻值下总径向场的极向傅里叶分量最大值随旋转变化的分布. 图中总径向场各个分量的最大值随旋转的变化规律与图5图6的模拟结果一致, 且对于每个极向傅里叶分量(m = 2, 3, 4), 谱图呈现出几乎相同的趋势, 仅在数值大小上有一定差别. 同时, 如果旋转频率一定, 电阻为零时, 放大效果最好, 随着电阻增大, 放大效应减弱. 由此可知, 电阻会削弱等离子体响应对扰动场的放大效应, 原因在于电阻使扰动电流耗散, 故而扰动场的最大值减小.

      等离子体响应中的放大效应来源于扰动场的非共振分量激发的近稳定的模式, 根据其径向区域的不同, 分为边缘剥离响应和芯部扭曲响应. 模拟中响应对扰动场的放大主要集中在等离子体芯部区域($ 0{<\psi }_{{\rm{p}}}<0.8 $), 说明该放大效应主要来源于芯部扭曲响应产生的扰动电流. 图9给出了不同电阻值下等离子体边缘剥离响应和芯部扭曲响应随旋转频率的变化, 虽然边缘剥离响应$ {\eta }_{0}=1.7524\times {10}^{-7} $的结果由于旋转很小时对应的位移幅值过大而未放在图中, 但其变化趋势与$ {\eta }_{0}=1.7524\times {10}^{-8} $的结果类似. 由图9可知, 边缘剥离响应随旋转增大而逐渐减弱, 且受电阻变化影响较小; 而芯部扭曲响应同时受旋转和电阻的影响. 在旋转频率较小时, 等离子体边缘剥离响应占主导, 产生的扰动电流主要集中在等离子体边缘区域, 对放大效应的贡献不大; 随着旋转频率增加, 等离子体芯部扭曲响应逐渐增强, 芯部扰动电流增加, 进而使扰动场增强, 即放大效应增大; 但是, 在旋转频率增大到一定程度时, 由于电阻的存在, 始终对扰动电流具有耗散作用, 所以其放大效应始终低于理想等离子体响应的情况. 对比图8图9, 可以看出不同电阻值下总径向场的极向傅里叶分量最大值随旋转变化的分布与不同电阻值下等离子体芯部扭曲响应随旋转变化的分布有较好的一致性, 这也验证了等离子体响应中的放大效应主要来源于芯部扭曲响应产生的扰动电流这一结论.

      图  9  不同电阻值下等离子体边缘剥离响应(peeling)和芯部扭曲响应(kink)随旋转频率的变化

      Figure 9.  The computed amplitude of the core-kink (blue dashed lines) and the edge-peeling (red solid lines) components of the plasma response with varying plasma toroidal rotation frequency and resistivity.

    • 本文在MARS-F全环向计算的基础上, 对HL-2A等离子体的RMP响应进行线性模拟, 研究了HL-2A等离子体环向旋转对响应的影响. 结果表明, 等离子体环向旋转频率的改变对响应中的屏蔽效应和放大效应的影响并不是简单的线性关系, 而是同时受等离子体电阻率的影响. 在屏蔽效应中, 当旋转频率较大时, 旋转增大有利于增强有理面的屏蔽效果; 当旋转频率较小时, 电阻导致的屏蔽效果最强处较有理面的偏移会干扰旋转对于屏蔽效果的影响. 在放大效应中, 电阻会削弱放大效果; 放大效应随旋转频率和电阻率的变化趋势与相应的芯部扭曲响应的变化趋势有较好的一致性, 说明响应对扰动场的放大作用主要由芯部扭曲响应引起.

      感谢美国通用原子公司的刘钺强研究员在MARS-F程序和模拟工作中给予的指导和帮助. 感谢核工业西南物理研究院提供的HL-2A实验参数作为本文工作的基础. 感谢东华大学的李莉、大连海事大学的周利娜、核工业西南物理研究院的王硕、吴娜、张能、陈海涛在程序调试过程中给予的帮助和支持.

参考文献 (27)

目录

    /

    返回文章
    返回