搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维材料的转移方法

廖俊懿 吴娟霞 党春鹤 谢黎明

引用本文:
Citation:

二维材料的转移方法

廖俊懿, 吴娟霞, 党春鹤, 谢黎明

Methods of transferring two-dimensional materials

Liao Jun-Yi, Wu Juan-Xia, Dang Chun-He, Xie Li-Ming
PDF
HTML
导出引用
  • 二维材料及其异质结在电子学、光电子学等领域具有潜在应用, 是延续摩尔定律的候选电子材料. 二维材料的转移对于物性测量与器件构筑至关重要. 本文综述了一些具有代表性的转移方法, 详细介绍了各个方法的操作步骤, 并基于转移后样品表面清洁程度、转移所需时间以及操作难易等方面对各个转移方法进行了对比归纳. 经典干、湿法转移技术是进行物理堆叠制备原子级平整且界面清晰范德瓦耳斯异质结的常用手段, 结合惰性气体保护或在真空条件下操作还可以避免转移过程中二维材料破损和界面吸附. 高效、无损大面积转移方法为二维材料异质结构建和材料本征物理化学性质测量提供了强有力的技术保障. 转移技术的优化将进一步扩展二维材料在高温超导、拓扑绝缘体、低能耗器件、自旋谷极化、转角电子学和忆阻器等领域的研究.
    The advent of two-dimensional (2D) materials, a family of materials with atomic thickness and van der Waals (vdWs) interlayer interactions, offers a new opportunity for developing electronics and optoelectronics. For example, semiconducting 2D materials are promising candidates for extending the Moore's Law. Typical 2D materials, such as graphene, hexagonal boron nitride (h-BN), black phosphorus (BP), transition metal dichalcogenides (TMDs), and their heterostrcutures present unique properties, arousing worldwide interest. In this review the current progress of the state-of-the-art transfer methods for 2D materials and their heterostructures is summarized. The reported dry and wet transfer methods, with hydrophilic or hydrophobic polymer film assistance, are commonly used for physical stacking to prepare atomically sharp vdWs heterostructure with clear interfaces. Compared with the bottom-up synthesis of 2D heterostructures using molecular beam epitaxy (MBE) or chemical vapor deposition (CVD), the construction of 2D heterostructures by transfer methods can be implemented into a curved or uneven substrate which is suitable for pressure sensing, piezoelectric conversion as well as other physical properties’ research. Moreover, the transfer of 2D materials with inert gas protected or in vacuum operation can protect moisture-sensitive and oxygen-sensitive 2D materials from degerating and also yield interfaces with no impurities. The efficient and non-destructive large-area transfer technology provides a powerful technical guarantee for constructing the 2D heterostructures and exploring the intrinsic physical and chemical characteristics of materials. Further development of transfer technology can greatly facilitate the applications of 2D materials in high-temperature superconductors, topological insulators, low-energy devices, spin-valley polarization, twistronics, memristors, and other fields.
      通信作者: 谢黎明, xielm@nanoctr.cn
    • 基金项目: 国家自然科学基金(批准号: 21673058, 21822502)、中国科学院前沿科学重点研究项目(批准号: QYZDB-SSW-SYS031)和中国科学院战略性先导科技专项(B类)(批准号: XDB30000000)资助的课题
      Corresponding author: Xie Li-Ming, xielm@nanoctr.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673058, 21822502), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SYS031), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB30000000)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Elias A L, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R T, Feng S M, Long A D, Hayashi T, Kim Y A, Endo M, Gutierrez H R, Pradhan N R, Balicas L, Mallouk T E, Lopez-Urias F, Terrones H, Terrones M 2013 ACS Nano 7 5235Google Scholar

    [3]

    Peng B, Zhang H, Shao H Z, Xu Y C, Zhang X C, Zhu H Y 2016 RSC Adv. 6 5767Google Scholar

    [4]

    Wu D, Wang Y E, Zeng L H, Jia C, Wu E P, Xu T T, Shi Z F, Tian Y T, Li X J, Tsang Y H 2018 ACS Photonics 5 3820Google Scholar

    [5]

    Cui Y, Xin R, Yu Z H, Pan Y M, Ong Z Y, Wei X X, Wang J Z, Nan H Y, Ni Z H, Wu Y, Chen T S, Shi Y, Wang B G, Zhang G, Zhang Y W, Wang X R 2015 Adv. Mater. 27 5230Google Scholar

    [6]

    Yu Y J, Yang F Y, Lu X F, Yan Y J, Cho Y H, Ma L G, Niu X H, Kim S, Son Y W, Feng D L, Li S Y, Cheong S W, Chen X H, Zhang Y B 2015 Nat. Nanotechnol. 10 270Google Scholar

    [7]

    Wang E Y, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111Google Scholar

    [8]

    Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K, Kim S M 2018 Science 362 817Google Scholar

    [9]

    Long G, Maryenko D, Shen J Y, Xu S G, Hou J Q, Wu Z F, Wong W K, Han T Y, Lin J X Z, Cai Y, Lortz R, Wang N 2016 Nano Lett. 16 7768Google Scholar

    [10]

    Gamage S, Li Z, Yakovlev V S, Lewis C, Wang H, Cronin S B, Abate Y 2016 Adv. Mater. Interfaces 3 1600121Google Scholar

    [11]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar

    [12]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [13]

    Jin C H, Kim J, Suh J, Shi Z W, Chen B, Fan X, Kam M, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wu J Q, Wang F 2017 Nat. Phys. 13 127Google Scholar

    [14]

    Wang X S, Song Z G, Wen W, Liu H N, Wu J X, Dang C H, Hossain M, Iqbal M A, Xie L M 2019 Adv. Mater. 31 1804682Google Scholar

    [15]

    Wen W, Zhu Y M, Liu X L, Hsu H P, Fei Z, Chen Y F, Wang X S, Zhang M, Lin K H, Huang F S, Wang Y P, Huang Y S, Ho C H, Tan P H, Jin C H, Xie L M 2017 Small 13 1603788Google Scholar

    [16]

    Hussain S, Xu K, Ye S, Lei L, Liu X, Xu R, Xie L, Cheng Z 2019 Front. Phys. 14 33401Google Scholar

    [17]

    刘健鹏, 戴希 2020 物理学报 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [18]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [19]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [20]

    Wen W, Zhu Y M, Dang C H, Chen W, Xie L M 2019 Nano Lett. 19 1805Google Scholar

    [21]

    Dang C, Guan M, Hussain S, Wen W, Zhu Y, Jiao L, Meng S, Xie L 2020 Nano Lett.Google Scholar

    [22]

    Wen W, Dang C H, Xie L M 2019 Chin. Phys. B 28 058504Google Scholar

    [23]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [24]

    Yasaei P, Behranginia A, Foroozan T, Asadi M, Kim K, Khalili-Araghi F, Salehi-Khojin A 2015 ACS Nano 9 9898Google Scholar

    [25]

    Yang Y, Gao J, Zhang Z, Xiao S, Xie H H, Sun Z B, Wang J H, Zhou C H, Wang Y W, Guo X Y, Chu P K, Yu X F 2016 Adv. Mater. 28 8937Google Scholar

    [26]

    Jia X B, Zhang Y H, Zou Y, Wang Y, Niu D C, He Q J, Huang Z J, Zhu W H, Tian H, Shi J L, Li Y S 2018 Adv. Mater. 30 1704490Google Scholar

    [27]

    刘梦溪, 张艳锋, 刘忠范 2015 物理学报 64 078101Google Scholar

    Liu M X, Zhang Y F, Liu Z F 2015 Acta Phys. Sin. 64 078101Google Scholar

    [28]

    Wang X, Yu P, Lei Z, Zhu C, Cao X, Liu F, You L, Zeng Q, Deng Y, Zhu C, Zhou J, Fu Q, Wang J, Huang Y, Liu Z 2019 Nat. Commun. 10 3037Google Scholar

    [29]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S Q, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 5968Google Scholar

    [30]

    Schneider G F, Calado V E, Zandbergen H, Vandersypen L M, Dekker C 2010 Nano Lett. 10 1912Google Scholar

    [31]

    Jiao L Y, Fan B, Xian X J, Wu Z Y, Zhang J, Liu Z F 2008 J. Am. Chem. Soc. 130 12612Google Scholar

    [32]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [33]

    Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, Georgiou T, Woods C R, Withers F, Blake P, Eda G, Wirsig A, Hucho C, Watanabe K, Taniguchi T, Geim A K, Gorbachev R V 2014 Nano Lett. 14 3270Google Scholar

    [34]

    Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [35]

    Reina A, Son H B, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F, Kong J 2008 J. Phys. Chem. C 112 17741Google Scholar

    [36]

    Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2011 Nat. Phys. 7 621Google Scholar

    [37]

    Li H, Wu J M T, Huang X, Yin Z Y, Liu J Q, Zhang H 2014 ACS Nano 8 6563Google Scholar

    [38]

    Suk J W, Kitt A, Magnuson C W, Hao Y F, Ahmed S, An J H, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

    [39]

    Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y, Takenobu T 2012 Nano Lett. 12 4013Google Scholar

    [40]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [41]

    Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104Google Scholar

    [42]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396Google Scholar

    [43]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [44]

    Fan S D, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2D Materials 7 022005

    [45]

    Lin Z Y, Zhao Y D, Zhou C J, Zhong R, Wang X S, Tsang Y H, Chai Y 2015 Sci. Rep. 5 18596

    [46]

    Liang X L, Sperling B A, Calizo I, Cheng G J, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H L, Li Q L, Zhu X X, Yuan H, Walker A R H, Liu Z F, Peng L M, Richter C A 2011 ACS Nano 5 9144Google Scholar

    [47]

    Wang P, Song S, Najafi A, Huai C, Zhang P, Hou Y, Huang S, Zeng H 2020 ACS Nano 14 7370Google Scholar

    [48]

    Zhang D, Wu Y C, Yang M, Liu X, Coileain C O, Xu H J, Abid M, Abid M, Wang J J, Shvets I V, Liu H N, Wang Z, Yin H X, Liu H J, Chun B S, Zhang X D, Wu H C 2016 RSC Adv. 6 99053Google Scholar

    [49]

    Li Y, Guo M F, Li Y B 2019 J. Mater. Chem. C 7 12991Google Scholar

    [50]

    Root S E, Savagatrup S, Printz A D, Rodriquez D, Lipomi D J 2017 Chem. Rev. 117 6467Google Scholar

    [51]

    Huang Y, Sutter E, Shi N N, Zheng J B, Yang T Z, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [52]

    Desai S B, Madhvapathy S R, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y Z, Dubey M, Ager J W, Chrzan D, Javey A 2016 Adv. Mater. 28 4053Google Scholar

    [53]

    Huang Z, Alharbi A, Mayer W, Cuniberto E, Taniguchi T, Watanabe K, Shabani J, Shahrjerdi D 2020 Nat. Commun. 11 3029Google Scholar

    [54]

    Tacx J, Schoffeleers H M, Brands A G M, Teuwen L 2000 Polymer 41 947Google Scholar

    [55]

    Liu F, Wu W J, Bai Y S, Chae S H, Li Q Y, Wang J, Hone J, Zhu X Y 2020 Science 367 903Google Scholar

    [56]

    Bjorkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar

    [57]

    Xu Z P, Buehler M J 2010 J. Phys. Condens. Matter 22 485301Google Scholar

    [58]

    Li Y L, Rao Y, Mak K F, You Y M, Wang S Y, Dean C R, Heinz T F 2013 Nano Lett. 13 3329Google Scholar

    [59]

    Saynatjoki A, Karvonen L, Rostami H, Autere A, Mehravar S, Lombardo A, Norwood R A, Hasan T, Peyghambarian N, Lipsanen H, Kieu K, Ferrari A C, Polini M, Sun Z P 2017 Nat. Commun. 8 893Google Scholar

    [60]

    Hegner M, Wagner P, Semenza G 1993 Surf. Sci. 291 39Google Scholar

    [61]

    Shim J, Bae S H, Kong W, Lee D, Qiao K, Nezich D, Park Y J, Zhao R K, Sundaram S, Li X, Yeon H, Choi C, Kum H, Yue R Y, Zhou G Y, Ou Y B, Lee K, Moodera J, Zhao X H, Ahn J H, Hinkle C, Ougazzaden A, Kim J 2018 Science 362 665Google Scholar

    [62]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H 2010 Nano Lett. 10 490Google Scholar

    [63]

    Gao L, Ni G X, Liu Y, Liu B, Castro Neto A H, Loh K P 2014 Nature 505 190Google Scholar

    [64]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [65]

    Ly T H, Perello D J, Zhao J, Deng Q M, Kim H, Han G H, Chae S H, Jeong H Y, Lee Y H 2016 Nat. Commun. 7 10426Google Scholar

    [66]

    Mun J, Kim Y, Kang I S, Lim S K, Lee S J, Kim J W, Park H M, Kim T, Kang S W 2016 Sci. Rep. 6 21854Google Scholar

    [67]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [68]

    Wang Y, Zheng Y, Xu X F, Dubuisson E, Bao Q L, Lu J, Loh K P 2011 ACS Nano 5 9927Google Scholar

    [69]

    de Jongh P E, Vanmaekelbergh D, Kelly J J 1999 Chem. Mater. 11 3512

    [70]

    Paracchino A, Laporte V, Sivula K, Gratzel M, Thimsen E 2011 Nat. Mater. 10 456Google Scholar

    [71]

    Wang X H, Tao L, Hao Y F, Liu Z H, Chou H, Kholmanov I, Chen S S, Tan C, Jayant N, Yu Q K, Akinwande D, Ruoff R S 2014 Small 10 694Google Scholar

    [72]

    de la Rosa C J L, Sun J, Lindvall N, Cole M T, Nam Y, Loffler M, Olsson E, Teo K B K, Yurgens A 2013 Appl. Phys. Lett. 102 022101Google Scholar

    [73]

    Gao Y, Liu Z B, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z Y, Ma X L, Peng L M, Cheng H M, Ren W C 2015 Nat. Commun. 6 8569Google Scholar

    [74]

    Wan W, Li X D, Li X T, Xu B B, Zhan L J, Zhao Z J, Zhang P C, Wu S Q, Zhu Z Z, Huang H, Zhou Y H, Cai W W 2016 RSC Adv. 6 323Google Scholar

    [75]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nat. Commun. 3 699Google Scholar

    [76]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J, Steele G A 2014 2D Materials 1 011002

    [77]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2006 Nat. Mater. 5 33Google Scholar

    [78]

    Goler S, Piazza V, Roddaro S, Pellegrini V, Beltram F, Pingue P 2011 J. Appl. Phys. 110 064308Google Scholar

    [79]

    Jain A, Bharadwaj P, Heeg S, Parzefall M, Taniguchi T, Watanabe K, Novotny L 2018 Nanotechnology 29 265203Google Scholar

    [80]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nat. Mater. 11 764Google Scholar

    [81]

    Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Materials 2 041002

    [82]

    Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Bøggild P, Booth T J 2016 Nat. Commun. 7 11894Google Scholar

    [83]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [84]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [85]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [86]

    Zomer P J, Guimaraes M H D, Brant J C, Tombros N, van Wees B J 2014 Appl. Phys. Lett. 105 013101Google Scholar

    [87]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [88]

    Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914Google Scholar

    [89]

    Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 17135Google Scholar

    [90]

    Chen X L, Lu X B, Deng B C, Sinai O, Shao Y C, Li C, Yuan S F, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F N 2017 Nat. Commun. 8 1672

    [91]

    Masubuchi S, Morimoto M, Morikawa S, Onodera M, Asakawa Y, Watanabe K, Taniguchi T, Machida T 2018 Nat. Commun. 9 1413Google Scholar

    [92]

    Gant P, Carrascoso F, Zhao Q, Ryu Y K, Seitz M, Prins F, Frisenda R, Castellanos-Gomez A 2020 2D Materials 7 025034

    [93]

    Nyberg C, Tengstal C G 1984 J. Chem. Phys. 80 3463Google Scholar

    [94]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [95]

    Fang H H, Yang J, Tao S X, Adjokatse S, Kamminga M E, Ye J T, Blake G R, Even J, Loi M A 2018 Adv. Funct. Mater. 28 1800305Google Scholar

    [96]

    Loi M A, Hummelen J C 2013 Nat. Mater. 12 1087

    [97]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391

    [98]

    Shao J D, Xie H H, Huang H, Li Z B, Sun Z B, Xu Y H, Xiao Q L, Yu X F, Zhao Y T, Zhang H, Wang H Y, Chu P K 2016 Nat. Commun. 7 12967

    [99]

    Jiang Q Q, Xu L, Chen N, Zhang H, Dai L M, Wang S Y 2016 Angew. Chem., Int. Ed. 55 13849Google Scholar

    [100]

    Chae S H, Jin Y, Kirn T S, Chung D S, Na H, Nam H, Kim H, Perello D J, Jeong H Y, Ly T H, Lee Y H 2016 ACS Nano 10 1309Google Scholar

    [101]

    Kang K, Lee K H, Han Y, Gao H, Xie S, Muller D A, Park J 2017 Nature 550 229Google Scholar

    [102]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [103]

    Liu K H, Zhang L M, Cao T, Jin C H, Qiu D A, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966

    [104]

    Kang K, Xie S E, Huang L J, Han Y M, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [105]

    Lee S, Lee S K, Kang C G, Cho C, Lee Y G, Jung U, Lee B H 2015 Carbon 93 286Google Scholar

  • 图 1  二维材料的转移方法

    Fig. 1.  Transfer methods for two-dimensional (2D) materials

    图 2  PMMA辅助转移制备Graphene/h-BN异质结 (a) 石墨烯被剥离在水溶性高分子与PMMA表面; (b) 在去离子水的作用下高分子薄膜与基底分离; (c) 石墨烯样品与h-BN对准; (d) 将石墨烯转移至带有h-BN的SiO2/Si基底上[32]

    Fig. 2.  Preparation of graphene/h-BN heterostructure by PMMA mediated transfer: (a) Graphene is exfoliated on the surface of water-soluble layer coated with PMMA; (b) the polymer film is separated from the substrate by the interface wetting of deionized water; (c) graphene is aligned with h-BN; (d) graphene is transferred on to the h-BN on SiO2/Si substrate[32].

    图 3  PLLA转移纳米材料 (a) 未转移前基底上的纳米材料; (b) 在基底表面覆盖PLLA与PDMS高分子膜; (c) 在去离子水的作用下高分子薄膜与基底分离; (d) 将薄膜转移至目标基底; (e) 将PDMS从PLLA表面剥离; (f) 二氯甲烷溶液浸泡除去PLLA[37]

    Fig. 3.  Transfer nanostructures onto arbitrary substrates by PLLA polymeric film: (a) Nanostructures on original substrate; (b) PLLA and PDMS are coated on the substrate; (c) the PLLA and PDMS film are separated from the substrate by the interface wetting of deionized water; (d) transfer the polymer film to the target substrate; (e) peel off the PDMS film; (f) remove PLLA by CH2Cl2 solution[37].

    图 4  牺牲层转移法制备Graphene/h-BN异质结 (a) 制作牺牲层高分子薄膜/双面黏附透明胶带/透明玻璃的三层结构支撑体; (b) 在高分子薄膜表面剥离石墨烯; (c) 石墨烯样品与h-BN对准; (d) 石墨烯接触目标基底; (e)和(f)为石墨烯脱离支撑体得到Graphene/h-BN异质结[44]

    Fig. 4.  Sacrificial-layer transferring graphene on to h-BN substrate: (a) A three-layer holder consists of a sacrificial film, a double-sided adhesive tape and a transparent glass; (b) graphene is exfoliated on the surface of the holder; (c) graphene is aligned with h-BN; (d) contact graphene with the target substrate; (e), (f) graphene is released from the holder and graphene/h-BN heterostructure is obtained[44].

    图 5  小分子掺杂PS转移WS2样品 (a) CVD生长在蓝宝石基底上的WS2样品; (b) 将样品置于液氮中浸泡15 min; (c) 将样品置于Li+溶液中浸泡30 min; (d) 在样品表面旋涂小分子/高分子混合物薄膜, 并在去离子水的作用下使薄膜与蓝宝石基底分离; (e) 将样品转移至目标基底; (f) 在甲苯溶液中浸泡1.5 h去除高分子薄膜[47]

    Fig. 5.  Transferring WS2 by a thin film of PS/small molecule composite: (a) WS2 is grown on sapphire substrate by CVD methods; (b) immerse the sample in liquid nitrogen for 15 min; (c) immerse the sample in a Li+ aqueous solution for 30 min; (d) a film of polymer/small molecule composite is spun-coating on the sample and then separated from the sapphire substrate by the interface wetting of deionized water; (e) transfer WS2 to the target substrate; (f) the polymer/small molecule composite is removed by soaking in toluene solution for 1.5 h[47].

    图 6  纤维素薄膜转移法转移图形化纳米结构 (a) 在亲水基底上的模型化纳米结构; (b) 在基底表面旋涂憎水高分子薄膜; (c) 在去离子水的作用下使薄膜与亲水基底分离; (d) 在探针的协助下使薄膜与目标基底对准; (e) 图形化纳米结构与目标基底接触; (f) 用乙酸乙酯去除高分子薄膜[30]

    Fig. 6.  Transferring patterned nanostructures by a cellulose film: (a) Patterned nanostructures on hydrophilic substrate; (b) hydrophobic polymer film is spun-coating on the substrate; (c) the polymer film is separated from the hydrophilic substrate by the interface wetting of deionized water; (d) align the film with the target substrate by a mechanical probe; (e) contact the patterned nanostructures with the target substrate; (f) the polymer film is removed with ethyl acetate[30].

    图 7  PVA吸附转移二维材料 (a) 在PVA表面剥离石墨烯样品; (b) 悬臂与石墨烯样品接触; (c) 用注射器在样品周围滴去离子水使局部的PVA溶解; (d) 将石墨烯转移至目标基底[53]

    Fig. 7.  Exfoliation and transfer of 2D materials by the PVA film: (a) Graphene is exfoliated on the PVA film; (b) the cantilever is in contact with the graphene; (c) PVA is dissolved by dropping deionized water around the sample with a syringe; (d) graphene is transferred to the target substrate[53].

    图 8  金属辅助剥离转移大面积TMDs单层 (a) 在Si基底表面沉积Au膜; (b) 在金膜表面旋涂PVP高分子膜; (c) 使用热释放胶带将PVP/金属层从Si基底上剥离; (d), (e) 利用金胶带剥离TMDs样品至目标基底; (f) 130 ℃下去除热释胶带; (g) 在去离子水中浸泡2 h去除PVP; (h) 将基底浸入KI/I2溶液中刻蚀样品表面的金膜; (i) 在目标基底表面的单层TMDs样品[55]

    Fig. 8.  Exfoliation of TMDs crystals to large-size monolayer and transferring to a target substrate: (a) Au is deposited on the Si substrate; (b) PVP polymer film is spun on the surface of the gold film; (c) the PVP/metal layer is peeled from the Si substrate by TRT; (d), (e) TMDs is exfoliated to the target substrate by TRT/PVP/Au; (f) The TRT is removed at 130 ℃; (g) PVP is removed by soaking in deionized water for 2 h; (h) the substrate is immersed in KI/I2 solution to etch the gold film; (i) monolayer TMDs on the target substrate[55].

    图 9  化学刻蚀转移CVD生长大面积石墨烯 (a), (b) 金属/SiO2基底上生长或图形化的石墨烯样品; (c) 在去离子水的作用下将高分子薄膜支撑的石墨烯/金属层从SiO2基底分离; (d) 利用FeCl3溶液刻蚀金属; (e) 将石墨烯转移至目标基底; (f) 光刻得到目标基底上的石墨烯样品[62]

    Fig. 9.  Transfer of CVD synthesized graphene film: (a), (b) Graphene grown or patterned on the metal/SiO2 substrate; (c) the graphene/metal layer supported by the polymer film is separated from the SiO2 substrate by the interface wetting of deionized water; (d) metal is etched by FeCl3 solution; (e) graphene is transferred to a target substrate; (f) the patterned graphene on the target substrate is obtained by lithography[62].

    图 10  电化学剥离转移Cu箔上的石墨烯[68]

    Fig. 10.  Electrochemical exfoliation and transfer of graphene from Cu foil[68].

    图 11  PDMS干法转移设备及过程 (a) 干法转移设备由显微镜、三维操作台、样品台等装置组成; (b) 在PDMS上机械剥离二维材料; (c) 将带有样品PDMS翻转; (d) 样品与目标基底对准; (e) 使样品与目标基底接触; (f) 将PDMS从基底表面剥离; (g) 样品被成功转移至目标基底[76]

    Fig. 11.  PDMS dry-transfer setup and process: (a) The dry transfer equipment consists of a optical microscope, a XYZ stamping stage and a XYZ sample stage; (b) 2D materials are exfoliated on PDMS; (c) the PDMS is turned upside down; (d) align the sample with the target substrate; (e) contact 2D materials with the target substrate; (f) the PDMS is peeled from the substrate; (g) the 2D materials are successfully transferred to target substrate[76].

    图 12  vdWs相互作用法转移制备h-BN/Graphene/h-BN异质结 (a) 透明玻璃/PDMS/PPC担体将h-BN从SiO2基底剥离; (b) 在110 ℃下将h-BN与石墨烯堆叠; (c) 将h-BN/Graphene从SiO2表面剥离; (d) 在110 ℃下将h-BN/Graphene与h-BN堆叠; (e) 成功制备h-BN/Graphene/h-BN异质结[82]

    Fig. 12.  The vdWs pick-up technique for preparation of h-BN/graphene/h-BN heterostructures: (a) h-BN is separated from SiO2 substrate by transparent glass/PDMS/PPC supports; (b) h-BN is stacked on graphene at 110 ℃; (c) h-BN/graphene heterostructure is separated from SiO2 substrate; (d) h-BN/graphene heterostructure is stacked on h-BN at 110 ℃; (e) h-BN/graphene/h-BN heterostructure is successfully fabricated[82].

    图 13  惰性气体保护转移装置[92]

    Fig. 13.  A transfer setup with inert gas protection[92].

    图 14  真空环境转移生长样品组装堆叠形成异质结 (a) 大面积二维材料的合成; (b) 利用TRT将PMMA/二维材料从基底表面剥离; (c) 在真空中转移L0层至L1层表面; (d) 利用TRT将转移后的材料整体从基底表面剥离; (e) 在目标基底堆叠形成的异质结[101]

    Fig. 14.  Layer-by-layer construction of wafer-scale 2D hetero-structures in vacuum: (a) Synthesis of large 2D materials; (b) PMMA/2D material is peeled from the substrate by TRT; (c) transfer L0 layer to L1 layer in vacuum; (d) the transferred materials are peeled from the substrate by TRT; (e) heterostructures is stacked on the target substrate[101].

    表 1  不同转移方法的对比

    Table 1.  Comparison among different deterministic transfer methods.

    转移
    类型
    转移方法载体转移过程中使用
    的最高温度
    能否在手套箱或
    真空中转移
    优点缺点参考
    文献
    湿法PVA吸附
    转移法
    PVA室温 × 容易剥离得到大面
    积单层样品
    需要在样品周围局部溶
    解高分子薄膜
    [53]
    PMMA协
    助转移法
    PMMA110 ℃ × 容易找到单层样品, 多种方法
    将载体从原始基底分离
    PMMA高分子薄膜需要溶液
    浸泡除去, 有机杂质吸附
    [32]
    PLLA快速
    转移法
    PLLA50 ℃ × 能转移零维、一维、二维
    材料, 目标基底种类多
    有机杂质吸附, 二氯甲
    烷溶液有毒性
    [37]
    牺牲层
    转移法
    MBMC75—100 ℃ × 转移得到的样品表面更光滑转移质量受样品与牺牲层高
    分子之间的结合力影响
    [41]
    小分子掺杂
    PS转移法
    小分子掺杂PS120 ℃ × 缩短转移时间, 降低有
    机残留吸附
    需要降温、离子插层等技
    术预处理, 步骤繁琐
    [47]
    湿法纤维素薄膜
    转移法
    纤维素室温 × 可以转移至曲面基底操作不精细, 转移样品褶皱、
    裂纹密度高
    [30]
    金属辅助剥
    离转移法
    金属130 ℃ × 转移厘米级单层样品, 可控
    实现AA堆积结构
    要求金属表面原子级平整,
    刻蚀金属难以回收利用
    [55]
    化学刻蚀
    转移法
    PDMS, PMMA室温 × 可以转移金属和SiO2/Si基
    底上连续生长的样品
    刻蚀液污染环境, 刻蚀基
    底难以回收利用
    [62]
    电化学剥离
    转移法
    PMMA室温 × 金属基底可以重
    复循环利用
    H2会使样品卷曲、褶皱[68]
    干法PDMS剥离
    转移法
    PDMS室温无溶液接触, 转移迅速样品质量受基底表面
    平整度与接触按压压
    力大小影响
    [76]
    vdWs相互作
    用转移法
    h-BN110 ℃无高分子接触转移过程相对复杂[82]
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Elias A L, Perea-Lopez N, Castro-Beltran A, Berkdemir A, Lv R T, Feng S M, Long A D, Hayashi T, Kim Y A, Endo M, Gutierrez H R, Pradhan N R, Balicas L, Mallouk T E, Lopez-Urias F, Terrones H, Terrones M 2013 ACS Nano 7 5235Google Scholar

    [3]

    Peng B, Zhang H, Shao H Z, Xu Y C, Zhang X C, Zhu H Y 2016 RSC Adv. 6 5767Google Scholar

    [4]

    Wu D, Wang Y E, Zeng L H, Jia C, Wu E P, Xu T T, Shi Z F, Tian Y T, Li X J, Tsang Y H 2018 ACS Photonics 5 3820Google Scholar

    [5]

    Cui Y, Xin R, Yu Z H, Pan Y M, Ong Z Y, Wei X X, Wang J Z, Nan H Y, Ni Z H, Wu Y, Chen T S, Shi Y, Wang B G, Zhang G, Zhang Y W, Wang X R 2015 Adv. Mater. 27 5230Google Scholar

    [6]

    Yu Y J, Yang F Y, Lu X F, Yan Y J, Cho Y H, Ma L G, Niu X H, Kim S, Son Y W, Feng D L, Li S Y, Cheong S W, Chen X H, Zhang Y B 2015 Nat. Nanotechnol. 10 270Google Scholar

    [7]

    Wang E Y, Lu X B, Ding S J, Yao W, Yan M Z, Wan G L, Deng K, Wang S P, Chen G R, Ma L G, Jung J, Fedorov A V, Zhang Y B, Zhang G Y, Zhou S Y 2016 Nat. Phys. 12 1111Google Scholar

    [8]

    Lee J S, Choi S H, Yun S J, Kim Y I, Boandoh S, Park J H, Shin B G, Ko H, Lee S H, Kim Y M, Lee Y H, Kim K K, Kim S M 2018 Science 362 817Google Scholar

    [9]

    Long G, Maryenko D, Shen J Y, Xu S G, Hou J Q, Wu Z F, Wong W K, Han T Y, Lin J X Z, Cai Y, Lortz R, Wang N 2016 Nano Lett. 16 7768Google Scholar

    [10]

    Gamage S, Li Z, Yakovlev V S, Lewis C, Wang H, Cronin S B, Abate Y 2016 Adv. Mater. Interfaces 3 1600121Google Scholar

    [11]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotechnol. 9 768Google Scholar

    [12]

    Schwierz F 2010 Nat. Nanotechnol. 5 487Google Scholar

    [13]

    Jin C H, Kim J, Suh J, Shi Z W, Chen B, Fan X, Kam M, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wu J Q, Wang F 2017 Nat. Phys. 13 127Google Scholar

    [14]

    Wang X S, Song Z G, Wen W, Liu H N, Wu J X, Dang C H, Hossain M, Iqbal M A, Xie L M 2019 Adv. Mater. 31 1804682Google Scholar

    [15]

    Wen W, Zhu Y M, Liu X L, Hsu H P, Fei Z, Chen Y F, Wang X S, Zhang M, Lin K H, Huang F S, Wang Y P, Huang Y S, Ho C H, Tan P H, Jin C H, Xie L M 2017 Small 13 1603788Google Scholar

    [16]

    Hussain S, Xu K, Ye S, Lei L, Liu X, Xu R, Xie L, Cheng Z 2019 Front. Phys. 14 33401Google Scholar

    [17]

    刘健鹏, 戴希 2020 物理学报 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Phys. Sin. 69 147301Google Scholar

    [18]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [19]

    Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q X, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C M, Wong H S P, Javey A 2016 Science 354 99Google Scholar

    [20]

    Wen W, Zhu Y M, Dang C H, Chen W, Xie L M 2019 Nano Lett. 19 1805Google Scholar

    [21]

    Dang C, Guan M, Hussain S, Wen W, Zhu Y, Jiao L, Meng S, Xie L 2020 Nano Lett.Google Scholar

    [22]

    Wen W, Dang C H, Xie L M 2019 Chin. Phys. B 28 058504Google Scholar

    [23]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9 372Google Scholar

    [24]

    Yasaei P, Behranginia A, Foroozan T, Asadi M, Kim K, Khalili-Araghi F, Salehi-Khojin A 2015 ACS Nano 9 9898Google Scholar

    [25]

    Yang Y, Gao J, Zhang Z, Xiao S, Xie H H, Sun Z B, Wang J H, Zhou C H, Wang Y W, Guo X Y, Chu P K, Yu X F 2016 Adv. Mater. 28 8937Google Scholar

    [26]

    Jia X B, Zhang Y H, Zou Y, Wang Y, Niu D C, He Q J, Huang Z J, Zhu W H, Tian H, Shi J L, Li Y S 2018 Adv. Mater. 30 1704490Google Scholar

    [27]

    刘梦溪, 张艳锋, 刘忠范 2015 物理学报 64 078101Google Scholar

    Liu M X, Zhang Y F, Liu Z F 2015 Acta Phys. Sin. 64 078101Google Scholar

    [28]

    Wang X, Yu P, Lei Z, Zhu C, Cao X, Liu F, You L, Zeng Q, Deng Y, Zhu C, Zhou J, Fu Q, Wang J, Huang Y, Liu Z 2019 Nat. Commun. 10 3037Google Scholar

    [29]

    Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S Q, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 5968Google Scholar

    [30]

    Schneider G F, Calado V E, Zandbergen H, Vandersypen L M, Dekker C 2010 Nano Lett. 10 1912Google Scholar

    [31]

    Jiao L Y, Fan B, Xian X J, Wu Z Y, Zhang J, Liu Z F 2008 J. Am. Chem. Soc. 130 12612Google Scholar

    [32]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, Hone J 2010 Nat. Nanotechnol. 5 722Google Scholar

    [33]

    Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, Georgiou T, Woods C R, Withers F, Blake P, Eda G, Wirsig A, Hucho C, Watanabe K, Taniguchi T, Geim A K, Gorbachev R V 2014 Nano Lett. 14 3270Google Scholar

    [34]

    Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, Kong J 2009 Nano Lett. 9 30Google Scholar

    [35]

    Reina A, Son H B, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F, Kong J 2008 J. Phys. Chem. C 112 17741Google Scholar

    [36]

    Taychatanapat T, Watanabe K, Taniguchi T, Jarillo-Herrero P 2011 Nat. Phys. 7 621Google Scholar

    [37]

    Li H, Wu J M T, Huang X, Yin Z Y, Liu J Q, Zhang H 2014 ACS Nano 8 6563Google Scholar

    [38]

    Suk J W, Kitt A, Magnuson C W, Hao Y F, Ahmed S, An J H, Swan A K, Goldberg B B, Ruoff R S 2011 ACS Nano 5 6916Google Scholar

    [39]

    Pu J, Yomogida Y, Liu K K, Li L J, Iwasa Y, Takenobu T 2012 Nano Lett. 12 4013Google Scholar

    [40]

    van der Zande A M, Huang P Y, Chenet D A, Berkelbach T C, You Y M, Lee G H, Heinz T F, Reichman D R, Muller D A, Hone J C 2013 Nat. Mater. 12 554Google Scholar

    [41]

    Zomer P J, Dash S P, Tombros N, van Wees B J 2011 Appl. Phys. Lett. 99 232104Google Scholar

    [42]

    Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K 2011 Nano Lett. 11 2396Google Scholar

    [43]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P, Ashoori R C 2013 Science 340 1427Google Scholar

    [44]

    Fan S D, Vu Q A, Tran M D, Adhikari S, Lee Y H 2020 2D Materials 7 022005

    [45]

    Lin Z Y, Zhao Y D, Zhou C J, Zhong R, Wang X S, Tsang Y H, Chai Y 2015 Sci. Rep. 5 18596

    [46]

    Liang X L, Sperling B A, Calizo I, Cheng G J, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H L, Li Q L, Zhu X X, Yuan H, Walker A R H, Liu Z F, Peng L M, Richter C A 2011 ACS Nano 5 9144Google Scholar

    [47]

    Wang P, Song S, Najafi A, Huai C, Zhang P, Hou Y, Huang S, Zeng H 2020 ACS Nano 14 7370Google Scholar

    [48]

    Zhang D, Wu Y C, Yang M, Liu X, Coileain C O, Xu H J, Abid M, Abid M, Wang J J, Shvets I V, Liu H N, Wang Z, Yin H X, Liu H J, Chun B S, Zhang X D, Wu H C 2016 RSC Adv. 6 99053Google Scholar

    [49]

    Li Y, Guo M F, Li Y B 2019 J. Mater. Chem. C 7 12991Google Scholar

    [50]

    Root S E, Savagatrup S, Printz A D, Rodriquez D, Lipomi D J 2017 Chem. Rev. 117 6467Google Scholar

    [51]

    Huang Y, Sutter E, Shi N N, Zheng J B, Yang T Z, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [52]

    Desai S B, Madhvapathy S R, Amani M, Kiriya D, Hettick M, Tosun M, Zhou Y Z, Dubey M, Ager J W, Chrzan D, Javey A 2016 Adv. Mater. 28 4053Google Scholar

    [53]

    Huang Z, Alharbi A, Mayer W, Cuniberto E, Taniguchi T, Watanabe K, Shabani J, Shahrjerdi D 2020 Nat. Commun. 11 3029Google Scholar

    [54]

    Tacx J, Schoffeleers H M, Brands A G M, Teuwen L 2000 Polymer 41 947Google Scholar

    [55]

    Liu F, Wu W J, Bai Y S, Chae S H, Li Q Y, Wang J, Hone J, Zhu X Y 2020 Science 367 903Google Scholar

    [56]

    Bjorkman T, Gulans A, Krasheninnikov A V, Nieminen R M 2012 Phys. Rev. Lett. 108 235502Google Scholar

    [57]

    Xu Z P, Buehler M J 2010 J. Phys. Condens. Matter 22 485301Google Scholar

    [58]

    Li Y L, Rao Y, Mak K F, You Y M, Wang S Y, Dean C R, Heinz T F 2013 Nano Lett. 13 3329Google Scholar

    [59]

    Saynatjoki A, Karvonen L, Rostami H, Autere A, Mehravar S, Lombardo A, Norwood R A, Hasan T, Peyghambarian N, Lipsanen H, Kieu K, Ferrari A C, Polini M, Sun Z P 2017 Nat. Commun. 8 893Google Scholar

    [60]

    Hegner M, Wagner P, Semenza G 1993 Surf. Sci. 291 39Google Scholar

    [61]

    Shim J, Bae S H, Kong W, Lee D, Qiao K, Nezich D, Park Y J, Zhao R K, Sundaram S, Li X, Yeon H, Choi C, Kum H, Yue R Y, Zhou G Y, Ou Y B, Lee K, Moodera J, Zhao X H, Ahn J H, Hinkle C, Ougazzaden A, Kim J 2018 Science 362 665Google Scholar

    [62]

    Lee Y, Bae S, Jang H, Jang S, Zhu S E, Sim S H, Song Y I, Hong B H, Ahn J H 2010 Nano Lett. 10 490Google Scholar

    [63]

    Gao L, Ni G X, Liu Y, Liu B, Castro Neto A H, Loh K P 2014 Nature 505 190Google Scholar

    [64]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [65]

    Ly T H, Perello D J, Zhao J, Deng Q M, Kim H, Han G H, Chae S H, Jeong H Y, Lee Y H 2016 Nat. Commun. 7 10426Google Scholar

    [66]

    Mun J, Kim Y, Kang I S, Lim S K, Lee S J, Kim J W, Park H M, Kim T, Kang S W 2016 Sci. Rep. 6 21854Google Scholar

    [67]

    Bae S, Kim H, Lee Y, Xu X F, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H, Iijima S 2010 Nat. Nanotechnol. 5 574Google Scholar

    [68]

    Wang Y, Zheng Y, Xu X F, Dubuisson E, Bao Q L, Lu J, Loh K P 2011 ACS Nano 5 9927Google Scholar

    [69]

    de Jongh P E, Vanmaekelbergh D, Kelly J J 1999 Chem. Mater. 11 3512

    [70]

    Paracchino A, Laporte V, Sivula K, Gratzel M, Thimsen E 2011 Nat. Mater. 10 456Google Scholar

    [71]

    Wang X H, Tao L, Hao Y F, Liu Z H, Chou H, Kholmanov I, Chen S S, Tan C, Jayant N, Yu Q K, Akinwande D, Ruoff R S 2014 Small 10 694Google Scholar

    [72]

    de la Rosa C J L, Sun J, Lindvall N, Cole M T, Nam Y, Loffler M, Olsson E, Teo K B K, Yurgens A 2013 Appl. Phys. Lett. 102 022101Google Scholar

    [73]

    Gao Y, Liu Z B, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z Y, Ma X L, Peng L M, Cheng H M, Ren W C 2015 Nat. Commun. 6 8569Google Scholar

    [74]

    Wan W, Li X D, Li X T, Xu B B, Zhan L J, Zhao Z J, Zhang P C, Wu S Q, Zhu Z Z, Huang H, Zhou Y H, Cai W W 2016 RSC Adv. 6 323Google Scholar

    [75]

    Gao L B, Ren W C, Xu H L, Jin L, Wang Z X, Ma T, Ma L P, Zhang Z Y, Fu Q, Peng L M, Bao X H, Cheng H M 2012 Nat. Commun. 3 699Google Scholar

    [76]

    Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L, van der Zant H S J, Steele G A 2014 2D Materials 1 011002

    [77]

    Meitl M A, Zhu Z T, Kumar V, Lee K J, Feng X, Huang Y Y, Adesida I, Nuzzo R G, Rogers J A 2006 Nat. Mater. 5 33Google Scholar

    [78]

    Goler S, Piazza V, Roddaro S, Pellegrini V, Beltram F, Pingue P 2011 J. Appl. Phys. 110 064308Google Scholar

    [79]

    Jain A, Bharadwaj P, Heeg S, Parzefall M, Taniguchi T, Watanabe K, Novotny L 2018 Nanotechnology 29 265203Google Scholar

    [80]

    Haigh S J, Gholinia A, Jalil R, Romani S, Britnell L, Elias D C, Novoselov K S, Ponomarenko L A, Geim A K, Gorbachev R 2012 Nat. Mater. 11 764Google Scholar

    [81]

    Uwanno T, Hattori Y, Taniguchi T, Watanabe K, Nagashio K 2015 2D Materials 2 041002

    [82]

    Pizzocchero F, Gammelgaard L, Jessen B S, Caridad J M, Wang L, Hone J, Bøggild P, Booth T J 2016 Nat. Commun. 7 11894Google Scholar

    [83]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [84]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [85]

    Wang L, Meric I, Huang P Y, Gao Q, Gao Y, Tran H, Taniguchi T, Watanabe K, Campos L M, Muller D A, Guo J, Kim P, Hone J, Shepard K L, Dean C R 2013 Science 342 614Google Scholar

    [86]

    Zomer P J, Guimaraes M H D, Brant J C, Tombros N, van Wees B J 2014 Appl. Phys. Lett. 105 013101Google Scholar

    [87]

    Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K, Cao Y 2017 Nat. Nanotechnol. 12 223Google Scholar

    [88]

    Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914Google Scholar

    [89]

    Wang Z P, Lin Q Q, Chmiel F P, Sakai N, Herz L M, Snaith H J 2017 Nat. Energy 2 17135Google Scholar

    [90]

    Chen X L, Lu X B, Deng B C, Sinai O, Shao Y C, Li C, Yuan S F, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L, Xia F N 2017 Nat. Commun. 8 1672

    [91]

    Masubuchi S, Morimoto M, Morikawa S, Onodera M, Asakawa Y, Watanabe K, Taniguchi T, Machida T 2018 Nat. Commun. 9 1413Google Scholar

    [92]

    Gant P, Carrascoso F, Zhao Q, Ryu Y K, Seitz M, Prins F, Frisenda R, Castellanos-Gomez A 2020 2D Materials 7 025034

    [93]

    Nyberg C, Tengstal C G 1984 J. Chem. Phys. 80 3463Google Scholar

    [94]

    Berhe T A, Su W N, Chen C H, Pan C J, Cheng J H, Chen H M, Tsai M C, Chen L Y, Dubale A A, Hwang B J 2016 Energy Environ. Sci. 9 323Google Scholar

    [95]

    Fang H H, Yang J, Tao S X, Adjokatse S, Kamminga M E, Ye J T, Blake G R, Even J, Loi M A 2018 Adv. Funct. Mater. 28 1800305Google Scholar

    [96]

    Loi M A, Hummelen J C 2013 Nat. Mater. 12 1087

    [97]

    Stranks S D, Snaith H J 2015 Nat. Nanotechnol. 10 391

    [98]

    Shao J D, Xie H H, Huang H, Li Z B, Sun Z B, Xu Y H, Xiao Q L, Yu X F, Zhao Y T, Zhang H, Wang H Y, Chu P K 2016 Nat. Commun. 7 12967

    [99]

    Jiang Q Q, Xu L, Chen N, Zhang H, Dai L M, Wang S Y 2016 Angew. Chem., Int. Ed. 55 13849Google Scholar

    [100]

    Chae S H, Jin Y, Kirn T S, Chung D S, Na H, Nam H, Kim H, Perello D J, Jeong H Y, Ly T H, Lee Y H 2016 ACS Nano 10 1309Google Scholar

    [101]

    Kang K, Lee K H, Han Y, Gao H, Xie S, Muller D A, Park J 2017 Nature 550 229Google Scholar

    [102]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X D 2017 Nature 546 270Google Scholar

    [103]

    Liu K H, Zhang L M, Cao T, Jin C H, Qiu D A, Zhou Q, Zettl A, Yang P D, Louie S G, Wang F 2014 Nat. Commun. 5 4966

    [104]

    Kang K, Xie S E, Huang L J, Han Y M, Huang P Y, Mak K F, Kim C J, Muller D, Park J 2015 Nature 520 656Google Scholar

    [105]

    Lee S, Lee S K, Kang C G, Cho C, Lee Y G, Jung U, Lee B H 2015 Carbon 93 286Google Scholar

  • [1] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用. 物理学报, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [2] 余泽浩, 张力发, 吴靖, 赵云山. 二维层状热电材料研究进展. 物理学报, 2023, 72(5): 057301. doi: 10.7498/aps.72.20222095
    [3] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响. 物理学报, 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [4] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应. 物理学报, 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [5] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触. 物理学报, 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [6] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [7] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [8] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应. 物理学报, 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [9] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性. 物理学报, 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [10] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [11] 白亮, 赵启旭, 沈健伟, 杨岩, 袁清红, 钟成, 孙海涛, 孙真荣. 基于MXene涂层保护Cs3Sb异质结光阴极材料的计算筛选. 物理学报, 2021, 70(21): 218504. doi: 10.7498/aps.70.20210956
    [12] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制. 物理学报, 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [13] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [14] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性. 物理学报, 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [15] 王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷. 二维原子晶体的转移堆叠方法及其高质量电子器件的研究进展. 物理学报, 2021, 70(13): 138202. doi: 10.7498/aps.70.20210929
    [16] 吴祥水, 汤雯婷, 徐象繁. 二维材料热传导研究进展. 物理学报, 2020, 69(19): 196602. doi: 10.7498/aps.69.20200709
    [17] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器. 物理学报, 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [18] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [19] 许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元. 新型机械解理方法在二维材料研究中的应用. 物理学报, 2018, 67(21): 218201. doi: 10.7498/aps.67.20181636
    [20] 张增星, 李东. 基于双极性二维晶体的新型p-n结. 物理学报, 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
计量
  • 文章访问数:  29753
  • PDF下载量:  2496
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-30
  • 修回日期:  2020-10-05
  • 上网日期:  2021-01-09
  • 刊出日期:  2021-01-20

/

返回文章
返回