搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二次单畴化制备GdBCO超导块材的方法及其性能

王妙 杨万民 王小梅 昝雅婷 陈森林 张明 胡成西

引用本文:
Citation:

二次单畴化制备GdBCO超导块材的方法及其性能

王妙, 杨万民, 王小梅, 昝雅婷, 陈森林, 张明, 胡成西

Fabrication process and superconducting properties of recycling multi-domain GdBCO bulk superconductors using improved infiltration technique

Wang Miao, Yang Wan-Min, Wang Xiao-Mei, Zan Ya-Ting, Chen Sen-Lin, Zhang Ming, Hu Cheng-Xi
PDF
HTML
导出引用
  • 高质量单畴REBa2Cu3O7–δ (REBCO)超导块材具有广泛的应用前景, 但制备过程中极易产生大量多畴样品, 致使成功率明显下降、成本显著提高, 并制约其进一步批量化和实用化的进程. 受顶部籽晶熔渗生长(TSIG)方法的启发, 本文提出了一种对生长失败的GdBCO超导块材重新单畴化织构生长的新方法, 即将生长失败的样品进行预处理后作为固相源坯块, 然后采用改进后的TSIG法进行二次单畴化织构生长, 并成功地制备出了一系列二次单畴化的GdBCO超导样品, 同时, 对样品的超导性能及微观结构进行了研究. 结果表明, 所制备的二次单畴化GdBCO超导样品的磁悬浮力均大于30 N, 样品的捕获磁通密度均在0.3 T以上, 捕获磁通效率高达60%以上, 该结果为进一步发展低成本、高效率制备REBCO超导体的新方法提供了科学依据和新思路.
    High temperature superconductor has become one of the hotspots of research, because of its high critical temperature, strong trapped flux density, stable suspension characteristics and large magnet levitation force. The single domain REBa2Cu3O7–δ (REBCO) superconductors have the wide and potential applications in the high-tech fields, such as micro-magnet superconducting maglev train, superconducting motor and superconducting magnetic separation system. However, a large number of multi-domain samples are easy to produce in the preparation process, which leads the success rate to decrease significantly and the cost to increase considerably, which restricts its practical application process. Inspired by the top seeded infiltration growth method, we develop a reliable method of recycling failed GdBCO sample by re-supplementing the liquid phase lost in the primary growth process and pretreating the failed sample as solid phase source billets. We recycle a series of GdBCO samples by using this new technique successfully. The growth morphology, superconducting properties, and microstructures of the recycled GdBCO bulk superconductors are investigated in detail in this study. The results show that the magnetic levitation forces of the recycled GdBCO samples are all greater than 30 N, their magnetic flux densities are all above 0.3 T, and their capture efficiencies are above 60%. These results provide the scientific basis and new ideas for developing the low cost and high efficient yield of fabrication of the REBCO bulk superconductors.
      通信作者: 王妙, cwnanmao@126.com
    • 基金项目: 国家自然科学基金(批准号: 51802247, 51872199)、陕西省高校科协青年人才托举计划(批准号: 20190422)和陕西高校第三批“青年杰出人才支持计划”资助的课题
      Corresponding author: Wang Miao, cwnanmao@126.com
    • Funds: Project supported by the National Nature Science Foundation of China (Grant Nos. 51802247, 51872199), the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China (Grant No. 20190422), and the 3rd Batch of Young Outstanding Talents Support Program for Colleges and Universities in Shaanxi Province, China
    [1]

    Wu M K, Ashburn J R, Torng C J 1987 Phys. Rev. Lett. 58 908Google Scholar

    [2]

    Chu C 1987 Proc. Natl. Acad. Sci. U.S.A. 84 4681Google Scholar

    [3]

    Durrell J H, Dennis A R, Jaroszynski J, Shi Y H, Cardwell A D 2014 Supercond. Sci. Technol. 27 082001Google Scholar

    [4]

    Tomita M, Murakami M 2003 Nature 421 517Google Scholar

    [5]

    Yang P T, Yang W M, Abula Y, Su X Q, Zhang L L 2017 Ceram. Int. 43 3010Google Scholar

    [6]

    Yang W M, Wang M 2013 Physica C 493 128Google Scholar

    [7]

    Ainslie M, Fujishiro H, Ujiie T 2014 Supercond. Sci. Technol. 27 065008Google Scholar

    [8]

    Jin J X, Guo Y G, Zhu J G 2007 Physica C 460 1445

    [9]

    Deng Z, He D, Zheng J 2015 IEEE Trans. Appl. Supercond. 25 3600106Google Scholar

    [10]

    Tomita M, Fukumoto Y, Suzuki K, Ishihara A, Muralidhar M 2011 J. Appl. Phys. 109 023912Google Scholar

    [11]

    Basaran S, Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008Google Scholar

    [12]

    Muralidhar M, Szuki K, Ishihara A, Jirsa M, Fukumoto Y, Tomita M 2010 Supercond. Sci. Technol. 23 124003Google Scholar

    [13]

    Cardwell D A, Shi Y H, Hari Babu N, Pathak S K, Dennis A R, Iida K 2010 Supercond. Sci. Technol. 23 034008Google Scholar

    [14]

    Cheng L, Li T, Yan S, Sun L, Yao X, Puzniak R 2011 J. Am. Ceram. Soc. 94 3139Google Scholar

    [15]

    Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324Google Scholar

    [16]

    Congreve J J, Shi Y H, Dennis A R, Durrell J H, Cardwell D A 2018 Supercond. Sci. Technol. 31 035008Google Scholar

    [17]

    Devendra Kumar N, Rajasekharan T, Sechubai V 2013 Physica C 495 55Google Scholar

    [18]

    Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar

    [19]

    Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013 Physica C 492 129Google Scholar

    [20]

    Hari Babu N, Shi Y H, Pathak S K, Dennis A R, Cardwell D A 2011 Physica C 471 169Google Scholar

    [21]

    Li T Y, Cheng L, Yan S B, Sun L J, Yao X, Yoshida Y, Ikuta H 2010 Supercond. Sci. Technol. 23 125002Google Scholar

    [22]

    Iida K, Löwe K, Kühn L, Nenkov K, Fuchs G, Krabbes G, Behr G, Holzapfel B, Schultz L 2009 Physica C 469 1153Google Scholar

    [23]

    Pathak S K, Hari Babu N, Dennis A R, Iida K, Strasik M, Cardwell D A 2010 Supercond. Sci. Technol. 23 065012Google Scholar

    [24]

    Xu H H, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2012 J. Appl. Phys. 111 103910Google Scholar

    [25]

    Xu H H, Chen Y Y, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2013 J. Supercond. Novel Magn. 26 919Google Scholar

    [26]

    Shi Y, Namburi D, Wang M, Durrell J, Dennis A, Cardwell D 2015 J. Am. Ceram. Soc. 98 2760Google Scholar

    [27]

    Yang W M, Zhi X, Chen S L, Wang M, Ma J, Chao X X 2014 Physica C 496 1Google Scholar

    [28]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys compd. 415 276Google Scholar

    [29]

    Guo Y X, Yang W M, Li J W, Guo L P, Li Q 2015 Cryst. Growth Des. 15 1771Google Scholar

    [30]

    Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar

    [31]

    Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar

    [32]

    王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar

    Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar

    [33]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar

    [34]

    Kumar N D, Shi Y H, Palmer K G, Dennis A D, DurRell J H, Cardwell D A 2016 J. Eur. Ceram. Soc. 36 615Google Scholar

    [35]

    Iida K, Hari Babu N, Shi Y H, Cardwell D A, Murakami M 2006 Supercond. Sci. Technol. 19 641Google Scholar

    [36]

    李国政, 陈超 2020 物理学报 69 237402Google Scholar

    Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar

  • 图 1  二次单畴化制备GdBCO样品的流程图

    Fig. 1.  Preparation flow chart of recycling the failed samples.

    图 2  GdBCO超导样品的表面宏观形貌图 (a)—(d) 生长失败的GdBCO样品; (e)—(h)二次单畴化生长后对应的样品

    Fig. 2.  Top view of the GdBCO bulk superconductors: (a)–(d) Failed GdBCO samples; (e)–(h) recycled samples.

    图 3  不同二次单畴化制备GdBCO超导样品的磁悬浮力曲线

    Fig. 3.  Levitation force of the recycled GdBCO samples.

    图 4  不同二次单畴化制备GdBCO超导样品的捕获磁通密度分布图 (a)样品e; (b)样品f; (c)样品g; (d)样品h

    Fig. 4.  Trapped field of the recycled GdBCO samples: (a) Sample e; (b) sample f; (c) sample g; (d) sample h.

    图 5  在二次单畴化制备的GdBCO超导样品的纵切面上取样示意图

    Fig. 5.  Schematic of the specimens cut from the recycled GdBCO sample.

    图 6  二次单畴化制备GdBCO超导样品f的临界转变温度(1 emu = 10–3 A·m2)

    Fig. 6.  Superconducting transition temperature of the recycled GdBCO sample f.

    图 7  二次单畴化制备GdBCO超导样品f的临界电流密度

    Fig. 7.  The Jc of the recycled GdBCO sample f.

    图 8  二次单畴化制备GdBCO超导样品f不同位置的微观形貌图

    Fig. 8.  Microstructure of the specimens cut from the recycled GdBCO sample f.

  • [1]

    Wu M K, Ashburn J R, Torng C J 1987 Phys. Rev. Lett. 58 908Google Scholar

    [2]

    Chu C 1987 Proc. Natl. Acad. Sci. U.S.A. 84 4681Google Scholar

    [3]

    Durrell J H, Dennis A R, Jaroszynski J, Shi Y H, Cardwell A D 2014 Supercond. Sci. Technol. 27 082001Google Scholar

    [4]

    Tomita M, Murakami M 2003 Nature 421 517Google Scholar

    [5]

    Yang P T, Yang W M, Abula Y, Su X Q, Zhang L L 2017 Ceram. Int. 43 3010Google Scholar

    [6]

    Yang W M, Wang M 2013 Physica C 493 128Google Scholar

    [7]

    Ainslie M, Fujishiro H, Ujiie T 2014 Supercond. Sci. Technol. 27 065008Google Scholar

    [8]

    Jin J X, Guo Y G, Zhu J G 2007 Physica C 460 1445

    [9]

    Deng Z, He D, Zheng J 2015 IEEE Trans. Appl. Supercond. 25 3600106Google Scholar

    [10]

    Tomita M, Fukumoto Y, Suzuki K, Ishihara A, Muralidhar M 2011 J. Appl. Phys. 109 023912Google Scholar

    [11]

    Basaran S, Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008Google Scholar

    [12]

    Muralidhar M, Szuki K, Ishihara A, Jirsa M, Fukumoto Y, Tomita M 2010 Supercond. Sci. Technol. 23 124003Google Scholar

    [13]

    Cardwell D A, Shi Y H, Hari Babu N, Pathak S K, Dennis A R, Iida K 2010 Supercond. Sci. Technol. 23 034008Google Scholar

    [14]

    Cheng L, Li T, Yan S, Sun L, Yao X, Puzniak R 2011 J. Am. Ceram. Soc. 94 3139Google Scholar

    [15]

    Meslin S, Noudem J G 2004 Supercond. Sci. Technol. 17 1324Google Scholar

    [16]

    Congreve J J, Shi Y H, Dennis A R, Durrell J H, Cardwell D A 2018 Supercond. Sci. Technol. 31 035008Google Scholar

    [17]

    Devendra Kumar N, Rajasekharan T, Sechubai V 2013 Physica C 495 55Google Scholar

    [18]

    Wang M, Yang W M, Li J W, Feng Z L, Yang P T 2015 Supercond. Sci. Technol. 28 035004Google Scholar

    [19]

    Wang M, Yang W M, Li J W, Feng Z L, Chen S L 2013 Physica C 492 129Google Scholar

    [20]

    Hari Babu N, Shi Y H, Pathak S K, Dennis A R, Cardwell D A 2011 Physica C 471 169Google Scholar

    [21]

    Li T Y, Cheng L, Yan S B, Sun L J, Yao X, Yoshida Y, Ikuta H 2010 Supercond. Sci. Technol. 23 125002Google Scholar

    [22]

    Iida K, Löwe K, Kühn L, Nenkov K, Fuchs G, Krabbes G, Behr G, Holzapfel B, Schultz L 2009 Physica C 469 1153Google Scholar

    [23]

    Pathak S K, Hari Babu N, Dennis A R, Iida K, Strasik M, Cardwell D A 2010 Supercond. Sci. Technol. 23 065012Google Scholar

    [24]

    Xu H H, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2012 J. Appl. Phys. 111 103910Google Scholar

    [25]

    Xu H H, Chen Y Y, Cheng L, Yan S B, Yu D J, Guo L S, Yao X 2013 J. Supercond. Novel Magn. 26 919Google Scholar

    [26]

    Shi Y, Namburi D, Wang M, Durrell J, Dennis A, Cardwell D 2015 J. Am. Ceram. Soc. 98 2760Google Scholar

    [27]

    Yang W M, Zhi X, Chen S L, Wang M, Ma J, Chao X X 2014 Physica C 496 1Google Scholar

    [28]

    Yang W M, Zhou L, Feng Y, Zhang P X, Zhang C P 2006 J. Alloys compd. 415 276Google Scholar

    [29]

    Guo Y X, Yang W M, Li J W, Guo L P, Li Q 2015 Cryst. Growth Des. 15 1771Google Scholar

    [30]

    Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar

    [31]

    Yang P T, Yang W M, Chen J L 2017 Supercond. Sci. Technol. 30 085003Google Scholar

    [32]

    王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar

    Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar

    [33]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar

    [34]

    Kumar N D, Shi Y H, Palmer K G, Dennis A D, DurRell J H, Cardwell D A 2016 J. Eur. Ceram. Soc. 36 615Google Scholar

    [35]

    Iida K, Hari Babu N, Shi Y H, Cardwell D A, Murakami M 2006 Supercond. Sci. Technol. 19 641Google Scholar

    [36]

    李国政, 陈超 2020 物理学报 69 237402Google Scholar

    Li G Z, Chen C 2020 Acta Phys. Sin. 69 237402Google Scholar

  • [1] 邓珊珊, 宋平, 刘潇贺, 姚森, 赵谦毅. 吉帕级单轴应力下Mn3Sn单晶的磁化率增强. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240287
计量
  • 文章访问数:  2987
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 修回日期:  2021-03-19
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回