搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阶梯相位调制的窄谱激光主动照明均匀性

罗文 陈天江 张飞舟 邹凯 安建祝 张建柱

引用本文:
Citation:

基于阶梯相位调制的窄谱激光主动照明均匀性

罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱

Active illumination uniformity with narrow spectrum laser based on ladderlike phase modulation

Luo Wen, Chen Tian-Jiang, Zhang Fei-Zhou, Zhou Kai, An Jian-Zhu, Zhang Jian-Zhu
PDF
HTML
导出引用
  • 提出一种基于阶梯相位调制的窄谱激光主动照明方法, 利用阶梯型相位调制器对窄谱激光进行相位调制, 提高照明激光到达目标处的光斑均匀性和稳定性. 建立了窄谱激光阶梯相位调制和照明激光远场光斑均匀性的理论模型, 搭建了光束经过1.8 km水平传输的窄谱激光主动照明实验平台, 通过5阶梯相位调制器对0.05 nm线宽的照明激光进行相位调制, 实现了照明激光远场光斑匀化实验. 实验结果表明, 通过5阶梯相位调制器进行相位调制后, 远场光斑包含57%能量区域的空间闪烁率从0.73改善到0.33, 中心光强时间闪烁指数从0.38改善到0.14, 照明激光远场光斑均匀性和稳定性都得到明显提升.
    Active illumination is a crucial technology for active imaging, active tracking and aiming system. But the atmosphere turbulence distributed over the entire path causes the intensity to fluctuate, which reduces the illumination uniformity seriously. Therefore, it is desirable to find ways to reduce the intensity fluctuation and improve the uniformity of active illumination. It has been revealed that one can improve illumination uniformity by using multi-beam laser illuminator. Another effective approach is partially coherent beam illumination.In this paper, a novel method is suggested to improve the illumination uniformity. Phase disturbance is induced by a ladder-like phase modulator (LPM) and the transmitting field of narrow spectrum laser is confused, and thus the atmosphere turbulence will be compensated and the illumination uniformity will be improved. The physical models of narrow spectrum laser phase modulation and atmosphere propagation are deduced, and the expression of the facular distribution is obtained. The active-illumination experimental setup with a laser propagation distance of 1.8 km through horizontal atmosphere is established. Based on the facular distribution of illumination laser at 1.8 km, the uniformity and stabilization are achieved. The experimental results indicate that the illumination uniformity and stabilization are both improved. The spatial and central time scintillation indexes are improved from 0.73 to 0.33 and from 0.38 to 0.14, respectively.
      通信作者: 张建柱, zhang_jianzhu@iapcm.ac.cn
      Corresponding author: Zhang Jian-Zhu, zhang_jianzhu@iapcm.ac.cn
    [1]

    Higgs C, Barclay H T, Kansky J E, Murphy D V, Primmerman C A 1998 Part of the Conference on Airborne Laser Advanced Technology Orlando, USA, April, 1998 p47

    [2]

    苏毅, 万敏 2004 高能激光系统 (北京: 国防工业出版社) 第181页

    Su Y, Wan M 2004 High Energy Laser System (Beijing: National Defense Industrial Press) p181 (in Chinese)

    [3]

    连天虹, 王石语, 蔡德芳, 李兵斌, 过振 2014 物理学报 63 034203Google Scholar

    Lian T H, Wang S Y, Cai D F, Li B B, Guo Z 2014 Acta Phys. Sin. 63 034203Google Scholar

    [4]

    谭毅, 耿超, 李新阳, 罗文, 罗奇 2015 物理学报 64 024216Google Scholar

    Tan Y, Geng C, Li X Y, Luo W, Luo Q 2015 Acta Phys. Sin. 64 024216Google Scholar

    [5]

    张飞舟, 李有宽 2007 光学学报 22 567Google Scholar

    Zhang F Z, Li Y K 2007 Acta Opt. Sin. 22 567Google Scholar

    [6]

    Peleg A, Moloney J V 2006 J. Opt. Soc. Am.A 23 3114Google Scholar

    [7]

    Espinola R L, Jacobs E L, Halford C E, Vollmerhausen R, Tofsted D H 2007 Opt. Exp. 15 3816Google Scholar

    [8]

    Redding B, Choma M A, Cao H 2012 Nat. Photon. 6 355Google Scholar

    [9]

    Holmes R, Rao Gudimetla V S 2019 Appl. Opt. 58 7823Google Scholar

    [10]

    Billman K W 1998 US Patent 5 734 504

    [11]

    Higgs C, Barclay H T 1998 Part of the SPIE Conference on Airborne Laser Advanced Technology Orlando, USA, April, 1998 p160

    [12]

    Higgs C, Barclay H T 1999 Part of the SPIE Conference on Airborne Laser Advanced Technology II Orlando, USA, April, 1999 p206

    [13]

    万敏, 张卫, 向汝建, 杨锐 2002 强激光与粒子束 14 0041

    Wan M, Zhang W, Xiang R J, Yang R 2002 High Power Laser and Particle Beam 14 0041

    [14]

    李宾中, 吕百达, 万敏, 李国会, 郑捷, 张卫 2003 激光技术 27 334Google Scholar

    Li B Z, Lyu B D, Wan M, Li G H, Zheng J, Zhang W 2003 Laser Tech. 27 334Google Scholar

    [15]

    Qian X M, Zhu W Y, Rao R Z 2009 Opt. Exp. 17 3782Google Scholar

    [16]

    Poyet J M, Meyer O, Christnacher F 2014 Opt. Lett. 39 2592Google Scholar

    [17]

    罗文, 张建柱, 谢晓钢, 张飞舟 2016 强激光与离子束 28 071005Google Scholar

    Luo W, Zhang J Z, Xie X G, Zhang F Z 2016 High Power Laser and Particle Beam 28 071005Google Scholar

    [18]

    康凯 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Kang K 2019 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [19]

    Peleg A, Moloney J V 2007 IEEE Phot. Tech. Lett. 19 883Google Scholar

    [20]

    Kiasaleh K 2006 J. Opt. Soc. Am.A 23 557Google Scholar

    [21]

    谢晓钢, 张建柱, 岳玉芳, 安建祝, 张飞舟 2013 强激光与离子束 25 2536Google Scholar

    Xie X G, Zhang J Z, Yue Y F, An J Z, Zhang F Z 2013 High Power Laser and Particle Beam 25 2536Google Scholar

    [22]

    张建柱, 李有宽 2005 强激光与离子束 17 0901Google Scholar

    Zhang J Z, Li Y K 2005 High Power Laser and Particle Beam 17 0901Google Scholar

    [23]

    张建柱, 张飞舟, 吴毅 2012 强激光与离子束 24 2318Google Scholar

    Zhang J Z, Zhang F Z, Wu Y 2012 High Power Laser and Particle Beam 24 2318Google Scholar

  • 图 1  阶梯相位调制的窄谱激光远场光斑匀化原理

    Fig. 1.  Uniformity principle of narrow spectrum laser illumination with ladderlike phase modulating

    图 2  不同湍流条件下照明光斑空间闪烁率

    Fig. 2.  Spatial scintillation index of illumination facular in atmosphere turbulence.

    图 3  不同湍流条件下照明光斑时间闪烁率

    Fig. 3.  Time scintillation index of illumination facular in atmosphere turbulence.

    图 4  实验装置示意图

    Fig. 4.  Scheme of active illumination experiment.

    图 5  1.8 km处远场光斑分布 (a), (b)无阶梯型相位调制器; (c), (d)有阶梯型相位调制器

    Fig. 5.  Focal patterns at 1.8 km: (a), (b) No phase modulation; (c), (d) ladderlike phase modulation (LPM).

    图 6  包含57%能量的光斑半径内空间闪烁率

    Fig. 6.  Spatial scintillation index in the area of ${R_{57\% }}$.

    图 7  光斑中心像素光强百分比变化曲线

    Fig. 7.  Time scintillation index of central intensity.

    图 8  远场光斑不同大小区域的空间闪烁率

    Fig. 8.  Spatial scintillation index in different area.

    图 9  远场光斑不同大小区域的空间闪烁率改善比

    Fig. 9.  Improving ratio of spatial scintillation index in different area.

    图 10  远场光斑不同大小区域能量占比的时间闪烁率

    Fig. 10.  Time scintillation index of energy ratio in different area.

    图 11  远场光斑不同大小区域能量占比的时间闪烁率改善比

    Fig. 11.  Improving ratio of time scintillation index of energy ratio in different area.

    表 1  阶梯型相位调制器光学镜中心位置及厚度

    Table 1.  Central position and thickness of optic lens.

    光学镜
    序号
    中心位置厚度
    X/mmY/mmh/mm
    1037.80
    235.911.750.3
    322.2–30.6100.6
    4–22.2–30.6150.9
    5–35.911.7201.3
    下载: 导出CSV
  • [1]

    Higgs C, Barclay H T, Kansky J E, Murphy D V, Primmerman C A 1998 Part of the Conference on Airborne Laser Advanced Technology Orlando, USA, April, 1998 p47

    [2]

    苏毅, 万敏 2004 高能激光系统 (北京: 国防工业出版社) 第181页

    Su Y, Wan M 2004 High Energy Laser System (Beijing: National Defense Industrial Press) p181 (in Chinese)

    [3]

    连天虹, 王石语, 蔡德芳, 李兵斌, 过振 2014 物理学报 63 034203Google Scholar

    Lian T H, Wang S Y, Cai D F, Li B B, Guo Z 2014 Acta Phys. Sin. 63 034203Google Scholar

    [4]

    谭毅, 耿超, 李新阳, 罗文, 罗奇 2015 物理学报 64 024216Google Scholar

    Tan Y, Geng C, Li X Y, Luo W, Luo Q 2015 Acta Phys. Sin. 64 024216Google Scholar

    [5]

    张飞舟, 李有宽 2007 光学学报 22 567Google Scholar

    Zhang F Z, Li Y K 2007 Acta Opt. Sin. 22 567Google Scholar

    [6]

    Peleg A, Moloney J V 2006 J. Opt. Soc. Am.A 23 3114Google Scholar

    [7]

    Espinola R L, Jacobs E L, Halford C E, Vollmerhausen R, Tofsted D H 2007 Opt. Exp. 15 3816Google Scholar

    [8]

    Redding B, Choma M A, Cao H 2012 Nat. Photon. 6 355Google Scholar

    [9]

    Holmes R, Rao Gudimetla V S 2019 Appl. Opt. 58 7823Google Scholar

    [10]

    Billman K W 1998 US Patent 5 734 504

    [11]

    Higgs C, Barclay H T 1998 Part of the SPIE Conference on Airborne Laser Advanced Technology Orlando, USA, April, 1998 p160

    [12]

    Higgs C, Barclay H T 1999 Part of the SPIE Conference on Airborne Laser Advanced Technology II Orlando, USA, April, 1999 p206

    [13]

    万敏, 张卫, 向汝建, 杨锐 2002 强激光与粒子束 14 0041

    Wan M, Zhang W, Xiang R J, Yang R 2002 High Power Laser and Particle Beam 14 0041

    [14]

    李宾中, 吕百达, 万敏, 李国会, 郑捷, 张卫 2003 激光技术 27 334Google Scholar

    Li B Z, Lyu B D, Wan M, Li G H, Zheng J, Zhang W 2003 Laser Tech. 27 334Google Scholar

    [15]

    Qian X M, Zhu W Y, Rao R Z 2009 Opt. Exp. 17 3782Google Scholar

    [16]

    Poyet J M, Meyer O, Christnacher F 2014 Opt. Lett. 39 2592Google Scholar

    [17]

    罗文, 张建柱, 谢晓钢, 张飞舟 2016 强激光与离子束 28 071005Google Scholar

    Luo W, Zhang J Z, Xie X G, Zhang F Z 2016 High Power Laser and Particle Beam 28 071005Google Scholar

    [18]

    康凯 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)

    Kang K 2019 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)

    [19]

    Peleg A, Moloney J V 2007 IEEE Phot. Tech. Lett. 19 883Google Scholar

    [20]

    Kiasaleh K 2006 J. Opt. Soc. Am.A 23 557Google Scholar

    [21]

    谢晓钢, 张建柱, 岳玉芳, 安建祝, 张飞舟 2013 强激光与离子束 25 2536Google Scholar

    Xie X G, Zhang J Z, Yue Y F, An J Z, Zhang F Z 2013 High Power Laser and Particle Beam 25 2536Google Scholar

    [22]

    张建柱, 李有宽 2005 强激光与离子束 17 0901Google Scholar

    Zhang J Z, Li Y K 2005 High Power Laser and Particle Beam 17 0901Google Scholar

    [23]

    张建柱, 张飞舟, 吴毅 2012 强激光与离子束 24 2318Google Scholar

    Zhang J Z, Zhang F Z, Wu Y 2012 High Power Laser and Particle Beam 24 2318Google Scholar

  • [1] 朱孝先, 高亦谈, 王羡之, 王一鸣, 王佶, 王兆华, 赵昆, 魏志义. 阿秒脉冲串产生和相位信息重构的对比研究. 物理学报, 2024, 0(0): . doi: 10.7498/aps.73.20240292
计量
  • 文章访问数:  3379
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-30
  • 修回日期:  2021-03-11
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回