搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用硫氰酸铵添加剂的高效天蓝色钙钛矿发光二极管

高九林 连亚军 杨晔 李国庆 杨晓晖

引用本文:
Citation:

采用硫氰酸铵添加剂的高效天蓝色钙钛矿发光二极管

高九林, 连亚军, 杨晔, 李国庆, 杨晓晖

High-efficiency sky blue perovskite light-emitting diodes with ammonium thiocyanate additive

Gao Jiu-Lin, Lian Ya-Jun, Yang Ye, Li Guo-Qing, Yang Xiao-Hui
PDF
HTML
导出引用
  • 金属卤化物钙钛矿发光器件具有可溶液加工、高发光效率和良好色纯度等诸多优良特性, 受到了广泛的关注, 但蓝色钙钛矿发光器件发光效率和光谱稳定性等方面的问题限制了钙钛矿材料在照明和显示领域的进一步发展. 本工作研究硫氰酸铵添加剂对准二维混合卤化物钙钛矿薄膜形貌、结晶度、光物理和电致发光特性的影响. 结果表明硫氰酸铵能有效钝化准二维混合卤化物钙钛矿薄膜的缺陷, 提高结晶度, 调节相分布, 从而改善其电荷传输特性和发光效率. 硫氰酸铵浓度为20%的准二维钙钛矿发光二极管的发光峰值波长位于486 nm处, 器件的最大外量子效率为5.83%, 最大亮度为1258 cd/m2, 分别比未添加硫氰酸铵的器件提升了6.7倍和3.6倍, 同时器件发光光谱稳定性和驱动稳定性也得到了明显的提升. 本研究为提高蓝色准二维混合卤化物钙钛矿发光二极管的特性提供了一种简单有效的方法.
    Metal halide perovskite light-emitting diodes have attracted much attention due to their excellent characteristics such as low-cost solution-processing, high luminous efficiency and excellent color purity. However, low luminous efficiency and spectrum stability of blue perovskite light-emitting device restrict the further development of perovskite materials in the field of displays and lighting. Here in this work, we study the effects of ammonium thiocyanate (NH4SCN) addition on the morphology, crystal structure, photo-physics, charge transport and electroluminescence properties of quasi-two-dimensional mixed-halide perovskite films by measuring scanning electron microscope (SEM), X-ray diffraction (XRD), UV-Vis spectrum, steady-state photoluminescence (PL), and transient PL and analyzing the current density–voltage characteristics of hole-dominated device and current density-voltage-luminance plots of light-emitting device. The results indicate that ammonium thiocyanate (NH4SCN) can effectively passivate the defects, improve the crystallinity, and modulate the phase distribution of quasi-two-dimensional mixed-halide perovskite film, thereby increasing charge transport and luminescent efficiency. Notably, PL intensity of the 20%-NH4SCN sample is 1.7 times higher than that of the control sample, which is attributed to the defect passivation effect of NH4SCN probably due to the Lewis acid-base interaction with Pb2+. Meanwhile, the hole mobility of the 20%-NH4SCN sample is measured to be 1.31 × 10–5 cm2/(V·s), which is much higher than that of the control sample (3.58 × 10–6 cm2/(V·s)). As a result, sky-blue quasi-two-dimensional mixed-halide perovskite light-emitting diode with 20%-NH4SCN possesses an EL maximum at 486 nm and a maximum external quantum efficiency (EQE) of 5.83% and a luminance of 1258 cd/m2, which are 6.7 and 3.6 times higher than those of the control device without NH4SCN, respectively. At the same time, the EL spectra of the 20%-NH4SCN device are barely changed under different operating voltages, whereas the EL spectra of the control device show a 7–10 nm red-shift under the same condition, indicating that the NH4SCN addition inhibits halide phase separation and improves the EL spectrum stability. In addition, the T50 operational life-time of the 20%-NH4SCN device is measured to be about 110 s, which is superior to that of the control device (39 s) due to improved film quality of NH4SCN-modified sample. This research provides a simple and effective method to improve the performances of quasi-two-dimensional mixed-halide perovskite blue-emitting diodes.
      通信作者: 杨晓晖, xhyang@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11474232)资助的课题
      Corresponding author: Yang Xiao-Hui, xhyang@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11474232)
    [1]

    Sutherland B R, Sargent E H 2016 Nat. Photonics 10 295Google Scholar

    [2]

    Kovalenko, M V, Protesescu L, Bodnarchuk, M I 2017 Science 358 745Google Scholar

    [3]

    Van Le Q, Jang H W, Kim S Y 2018 Small Methods 2 1700419Google Scholar

    [4]

    Kumawat N K, Liu X K, Kabra D, Gao F 2019 Nanoscale 11 2109Google Scholar

    [5]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [6]

    吴海妍, 唐建新, 李艳青 2020 物理学报 69 138502Google Scholar

    Wu H Y, Tang J X, Li Y Q 2020 Acta Phys. Sin. 69 138502Google Scholar

    [7]

    Yuan F, Ran C, Zhang L, Dong H, Jiao B, Hou X, Li J, Wu Z 2020 ACS Energy Lett. 5 1062Google Scholar

    [8]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar

    [9]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photonics 12 681Google Scholar

    [10]

    Kim Y H, Kim S, Kakekhani A, Park J, Park J, Lee YH, Xu H, Nagane S, Wexler R B, Kim D H, Jo S H, Martínez-Sarti L, Tan P, Sadhanala A, Park GS, Kim Y W, Hu B, Bolink H J, Yoo S, Friend R H, Rappe A M, Lee T W 2021 Nat. Photonics 15 148Google Scholar

    [11]

    Chu Z, Ye Q, Zhao Y, Ma F, Yin Z, Zhang X, You J 2021 Adv. Mater. 33 2007169Google Scholar

    [12]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [13]

    Ren Z, Yu J, Qin Z, Wang J, Sun J, Chan C C S, Ding S, Wang K, Chen R, Wong K S, Lu X, Yin W J, Choy W C H 2021 Adv. Mater. 33 2005570Google Scholar

    [14]

    Dong Y, Wang Y K, Yuan F, Johnston A, Liu Y, Ma D, Choi M J, Chen B, Chekini M, Baek S W, Sagar L K, Fan J, Hou Y, Wu M, Lee S, Sun B, Hoogland S, Quintero-Bermudez R, Ebe H, Todorovic P, Dinic F, Li P, Kung H T, Saidaminov M I, Kumacheva E, Spiecker E, Liao L S, Voznyy O, Lu Z H, Sargent E H 2020 Nat. Nanotechnol. 15 668Google Scholar

    [15]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [16]

    Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226Google Scholar

    [17]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83Google Scholar

    [18]

    Cho H, Kim Y H, Wolf C, Lee H D, Lee T W 2018 Adv. Mater. 30 1704587Google Scholar

    [19]

    Quan L N, Garcia de Arquer F P, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [20]

    Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar

    [21]

    Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y, Liao L S 2019 Adv. Mater. 31 1904319Google Scholar

    [22]

    Wang Q, Ren J, Peng X F, Ji X X, Yang X H 2017 ACS Appl. Mater. Interfaces 9 29901Google Scholar

    [23]

    Wang Z, Wang F, Sun W, Ni R, Hu S, Liu J, Zhang B, Alsaed A, Hayat T, Tan Z a 2018 Adv. Funct. Mater. 28 1804187Google Scholar

    [24]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [25]

    Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J 2019 Nat. Commun. 10 5633Google Scholar

    [26]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [27]

    Liu Y, Ono L K, Qi Y 2020 InfoMat 2 1095Google Scholar

    [28]

    Wang D, Li W, Du Z, Li G, Sun W, Wu J, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar

    [29]

    Liu Z, Liu D, Chen H, Ji L, Zheng H, Gu Y, Wang F, Chen Z, Li S 2019 Nanoscale Res. Lett. 14 304Google Scholar

    [30]

    Fu W, Wang J, Zuo L, Gao K, Liu F, Ginger D S, Jen A K Y 2018 ACS Energy Lett. 3 2086Google Scholar

    [31]

    Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar

    [32]

    Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar

    [33]

    Zhang X, Wu G, Yang S, Fu W, Zhang Z, Chen C, Liu W, Yan J, Yang W, Chen H 2017 Small 13 1700611Google Scholar

    [34]

    Leung T L, Tam H W, Liu F, Lin J, Ng A M C, Chan W K, Chen W, He Z, Lončarić I, Grisanti L, Ma C, Wong K S, Lau Y S, Zhu F, Skoko Ž, Popović J, Djurišić A B 2019 Adv. Opt. Mater. 8 1901679Google Scholar

    [35]

    Hu J, Oswald I W H, Stuard S J, Nahid M M, Zhou N, Williams O F, Guo Z, Yan L, Hu H, Chen Z, Xiao X, Lin Y, Yang Z, Huang J, Moran A M, Ade H, Neilson J R, You W 2019 Nat. Commun. 10 1276Google Scholar

    [36]

    deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S 2016 ACS Energy Lett. 1 438Google Scholar

    [37]

    Pang P, Jin G, Liang C, Wang B, Xiang W, Zhang D, Xu J, Hong W, Xiao Z, Wang L, Xing G, Chen J, Ma D 2020 ACS Nano 14 11420Google Scholar

    [38]

    Shen Y, Shen K C, Li Y Q, Guo M, Wang J, Ye Y, Xie F M, Ren H, Gao X, Song F, Tang J X 2020 Adv. Funct. Mater. 31 2006736Google Scholar

    [39]

    Zhao X, Liu T, Kaplan A B, Yao C, Loo Y L 2020 Nano Lett. 20 8880Google Scholar

    [40]

    Cai L, Liang D, Wang X, Zang J, Bai G, Hong Z, Zou Y, Song T, Sun B 2021 J. Phys. Chem. Lett. 12 1747Google Scholar

    [41]

    Yu M, Yi C, Wang N, Zhang L, Zou R, Tong Y, Chen H, Cao Y, He Y, Wang Y, Xu M, Liu Y, Jin Y, Huang W, Wang J 2018 Adv. Opt. Mater. 7 1801575Google Scholar

    [42]

    Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [43]

    Zou Y, Yuan Z, Bai S, Gao F, Sun B 2019 Mater. Today Nano 5 100028Google Scholar

    [44]

    Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F 2021 Nat. Mater. 20 10Google Scholar

  • 图 1  NH4SCN浓度分别为 (a) 0%; (b) 10%; (c) 20%; (d) 40%准二维钙钛矿薄膜的SEM形貌(插图为高分辨率SEM 图像)和 (e) XRD图谱

    Fig. 1.  Top-view SEM images of the samples with the NH4SCN concentration of (a) 0%; (b) 10%; (c) 20%; (d) 40% (Insets: high-resolution SEM images); (e) XRD patterns of the samples.

    图 2  (a) 不同NH4SCN浓度样品的紫外-可见吸收光谱; (b) 光致发光光谱

    Fig. 2.  (a) UV-Vis absorption spectra; (b) steady-state photoluminescence spectra of the samples with different NH4SCN concentrations.

    图 3  (a) 405 nm激光激发下样品的时间分辨光致发光衰减曲线; (b) 空穴主导型器件的电流-电压特性曲线

    Fig. 3.  (a) Time-resolved photoluminescence decay curves of the samples under 405 nm laser excitation; (b) current density-voltage characteristics of hole-dominated devices.

    图 4  (a) 器件结构示意图; (b) 电流密度-电压-亮度曲线; (c) 外量子效率-电流密度特性

    Fig. 4.  (a) Schematic diagram of device structure; (b) current density-voltage-luminance curves; (c) external quantum efficiency-current density characteristics of the devices with different NH4SCN concentrations.

    图 5  (a) 不同NH4SCN浓度器件的归一化电致发光光谱; (b) 在不同电压下0% NH4SCN和 (c) 20% NH4SCN器件电致发光光谱, 插图给出20% NH4SCN器件的照片; (d) 在起始亮度为100 cd/m2下器件工作寿命特性

    Fig. 5.  (a) Normalized electroluminescence spectra of the devices with different NH4SCN concentrations; (b) normalized electroluminescence spectra of the 0% NH4SCN and (c) 20% NH4SCN devices under different operating voltages, the inset shows a photograph of a working 20% NH4SCN device; (d) operational life-time properties of the devices measured with an initial luminance of 100 cd/m2.

    表 1  不同NH4SCN浓度钙钛矿薄膜的时间分辨光致发光的拟合参数总结

    Table 1.  Summarization of the fitting parameters for TRPL decay traces of the perovskite films with different NH4SCN concentrations.

    NH4SCN
    concentration
    $ A_1 $/%$ {\rm{\tau}}_1 $/ns$ A_2 $/%$ {\rm{\tau}}_2 $/ns${\rm{\tau} }_{\rm avg}$/ns
    0%93.470.876.5310.101.47
    10%87.472.9212.5327.135.95
    20%92.974.937.0342.067.54
    40%89.054.2710.9530.987.19
    下载: 导出CSV
  • [1]

    Sutherland B R, Sargent E H 2016 Nat. Photonics 10 295Google Scholar

    [2]

    Kovalenko, M V, Protesescu L, Bodnarchuk, M I 2017 Science 358 745Google Scholar

    [3]

    Van Le Q, Jang H W, Kim S Y 2018 Small Methods 2 1700419Google Scholar

    [4]

    Kumawat N K, Liu X K, Kabra D, Gao F 2019 Nanoscale 11 2109Google Scholar

    [5]

    段聪聪, 程露, 殷垚, 朱琳 2019 物理学报 68 158503Google Scholar

    Duan C C, Cheng L, Yin Y, Zhu L 2019 Acta Phys. Sin. 68 158503Google Scholar

    [6]

    吴海妍, 唐建新, 李艳青 2020 物理学报 69 138502Google Scholar

    Wu H Y, Tang J X, Li Y Q 2020 Acta Phys. Sin. 69 138502Google Scholar

    [7]

    Yuan F, Ran C, Zhang L, Dong H, Jiao B, Hou X, Li J, Wu Z 2020 ACS Energy Lett. 5 1062Google Scholar

    [8]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photonics 13 418Google Scholar

    [9]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photonics 12 681Google Scholar

    [10]

    Kim Y H, Kim S, Kakekhani A, Park J, Park J, Lee YH, Xu H, Nagane S, Wexler R B, Kim D H, Jo S H, Martínez-Sarti L, Tan P, Sadhanala A, Park GS, Kim Y W, Hu B, Bolink H J, Yoo S, Friend R H, Rappe A M, Lee T W 2021 Nat. Photonics 15 148Google Scholar

    [11]

    Chu Z, Ye Q, Zhao Y, Ma F, Yin Z, Zhang X, You J 2021 Adv. Mater. 33 2007169Google Scholar

    [12]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [13]

    Ren Z, Yu J, Qin Z, Wang J, Sun J, Chan C C S, Ding S, Wang K, Chen R, Wong K S, Lu X, Yin W J, Choy W C H 2021 Adv. Mater. 33 2005570Google Scholar

    [14]

    Dong Y, Wang Y K, Yuan F, Johnston A, Liu Y, Ma D, Choi M J, Chen B, Chekini M, Baek S W, Sagar L K, Fan J, Hou Y, Wu M, Lee S, Sun B, Hoogland S, Quintero-Bermudez R, Ebe H, Todorovic P, Dinic F, Li P, Kung H T, Saidaminov M I, Kumacheva E, Spiecker E, Liao L S, Voznyy O, Lu Z H, Sargent E H 2020 Nat. Nanotechnol. 15 668Google Scholar

    [15]

    Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar

    [16]

    Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226Google Scholar

    [17]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83Google Scholar

    [18]

    Cho H, Kim Y H, Wolf C, Lee H D, Lee T W 2018 Adv. Mater. 30 1704587Google Scholar

    [19]

    Quan L N, Garcia de Arquer F P, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar

    [20]

    Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar

    [21]

    Yuan S, Wang Z K, Xiao L X, Zhang C F, Yang S Y, Chen B B, Ge H T, Tian Q S, Jin Y, Liao L S 2019 Adv. Mater. 31 1904319Google Scholar

    [22]

    Wang Q, Ren J, Peng X F, Ji X X, Yang X H 2017 ACS Appl. Mater. Interfaces 9 29901Google Scholar

    [23]

    Wang Z, Wang F, Sun W, Ni R, Hu S, Liu J, Zhang B, Alsaed A, Hayat T, Tan Z a 2018 Adv. Funct. Mater. 28 1804187Google Scholar

    [24]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [25]

    Wang Q, Wang X, Yang Z, Zhou N, Deng Y, Zhao J, Xiao X, Rudd P, Moran A, Yan Y, Huang J 2019 Nat. Commun. 10 5633Google Scholar

    [26]

    黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛 2019 物理学报 68 158505Google Scholar

    Li Z C, Chen Z M, Zou G R X, Yip H L, Cao Y 2019 Acta Phys. Sin. 68 158505Google Scholar

    [27]

    Liu Y, Ono L K, Qi Y 2020 InfoMat 2 1095Google Scholar

    [28]

    Wang D, Li W, Du Z, Li G, Sun W, Wu J, Lan Z 2020 ACS Appl. Mater. Interfaces 12 10579Google Scholar

    [29]

    Liu Z, Liu D, Chen H, Ji L, Zheng H, Gu Y, Wang F, Chen Z, Li S 2019 Nanoscale Res. Lett. 14 304Google Scholar

    [30]

    Fu W, Wang J, Zuo L, Gao K, Liu F, Ginger D S, Jen A K Y 2018 ACS Energy Lett. 3 2086Google Scholar

    [31]

    Han S, Zhang H, Wang R, He Q 2021 Mat. Sci. Semicon. Proc. 127 105666Google Scholar

    [32]

    Peng X F, Wu X Y, Ji X X, Ren J, Wang Q, Li G Q, Yang X H 2017 J. Phys. Chem. Lett. 8 4691Google Scholar

    [33]

    Zhang X, Wu G, Yang S, Fu W, Zhang Z, Chen C, Liu W, Yan J, Yang W, Chen H 2017 Small 13 1700611Google Scholar

    [34]

    Leung T L, Tam H W, Liu F, Lin J, Ng A M C, Chan W K, Chen W, He Z, Lončarić I, Grisanti L, Ma C, Wong K S, Lau Y S, Zhu F, Skoko Ž, Popović J, Djurišić A B 2019 Adv. Opt. Mater. 8 1901679Google Scholar

    [35]

    Hu J, Oswald I W H, Stuard S J, Nahid M M, Zhou N, Williams O F, Guo Z, Yan L, Hu H, Chen Z, Xiao X, Lin Y, Yang Z, Huang J, Moran A M, Ade H, Neilson J R, You W 2019 Nat. Commun. 10 1276Google Scholar

    [36]

    deQuilettes D W, Koch S, Burke S, Paranji R K, Shropshire A J, Ziffer M E, Ginger D S 2016 ACS Energy Lett. 1 438Google Scholar

    [37]

    Pang P, Jin G, Liang C, Wang B, Xiang W, Zhang D, Xu J, Hong W, Xiao Z, Wang L, Xing G, Chen J, Ma D 2020 ACS Nano 14 11420Google Scholar

    [38]

    Shen Y, Shen K C, Li Y Q, Guo M, Wang J, Ye Y, Xie F M, Ren H, Gao X, Song F, Tang J X 2020 Adv. Funct. Mater. 31 2006736Google Scholar

    [39]

    Zhao X, Liu T, Kaplan A B, Yao C, Loo Y L 2020 Nano Lett. 20 8880Google Scholar

    [40]

    Cai L, Liang D, Wang X, Zang J, Bai G, Hong Z, Zou Y, Song T, Sun B 2021 J. Phys. Chem. Lett. 12 1747Google Scholar

    [41]

    Yu M, Yi C, Wang N, Zhang L, Zou R, Tong Y, Chen H, Cao Y, He Y, Wang Y, Xu M, Liu Y, Jin Y, Huang W, Wang J 2018 Adv. Opt. Mater. 7 1801575Google Scholar

    [42]

    Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [43]

    Zou Y, Yuan Z, Bai S, Gao F, Sun B 2019 Mater. Today Nano 5 100028Google Scholar

    [44]

    Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F 2021 Nat. Mater. 20 10Google Scholar

  • [1] 王辉, 郑德旭, 姜箫, 曹越先, 杜敏永, 王开, 刘生忠, 张春福. 基于协同钝化策略制备高性能柔性钙钛矿太阳能电池的研究. 物理学报, 2024, 73(7): 078401. doi: 10.7498/aps.73.20231846
    [2] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221222
    [3] 韩梅斗雪, 王雅, 王荣波, 赵均陶, 任慧志, 侯国付, 赵颖, 张晓丹, 丁毅. 锂掺杂提高硫氰酸亚铜的电学特性及在钙钛矿太阳电池中的应用. 物理学报, 2022, 71(21): 217801. doi: 10.7498/aps.71.20221222
    [4] 黄鑫梅, 何晓莉, 徐强, 陈平, 张勇, 高春红. 基于离子化合物的高性能钙钛矿发光二极管. 物理学报, 2022, 71(20): 208502. doi: 10.7498/aps.71.20220858
    [5] 刘钰雪, 明逸东, 吴聪聪. 氯掺杂甲胺基钙钛矿电池的性能及其改进. 物理学报, 2022, 71(20): 207303. doi: 10.7498/aps.71.20220966
    [6] 王成麟, 张左林, 朱云飞, 赵雪帆, 宋宏伟, 陈聪. 钙钛矿太阳能电池中缺陷及其钝化策略研究进展. 物理学报, 2022, 71(16): 166801. doi: 10.7498/aps.71.20220359
    [7] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [8] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [9] 余毅, 安治东, 蔡晓艺, 郭明磊, 敬承斌, 李艳青. 锡基钙钛矿的研究进展及其在发光二极管中的应用. 物理学报, 2021, 70(4): 048503. doi: 10.7498/aps.70.20201284
    [10] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [11] 王润, 贾亚兰, 张月, 马兴娟, 徐强, 朱志新, 邓艳红, 熊祖洪, 高春红. 基于激子阻挡层的高效率绿光钙钛矿电致发光二极管. 物理学报, 2020, 69(3): 038501. doi: 10.7498/aps.69.20191263
    [12] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展. 物理学报, 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [13] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [14] 黎振超, 陈梓铭, 邹广锐兴, 叶轩立, 曹镛. 有机添加剂在金属卤化钙钛矿发光二极管中的应用. 物理学报, 2019, 68(15): 158505. doi: 10.7498/aps.68.20190307
    [15] 付鹏飞, 虞丹妮, 彭子健, 龚晋慷, 宁志军. 扭曲二维结构钝化的钙钛矿太阳能电池. 物理学报, 2019, 68(15): 158802. doi: 10.7498/aps.68.20190306
    [16] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [17] 段聪聪, 程露, 殷垚, 朱琳. 蓝光钙钛矿发光二极管: 机遇与挑战. 物理学报, 2019, 68(15): 158503. doi: 10.7498/aps.68.20190745
    [18] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展. 物理学报, 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [19] 李晓果, 张欣, 施则骄, 张海娟, 朱成军, 詹义强. n-i-p结构钙钛矿太阳能电池界面钝化的研究进展. 物理学报, 2019, 68(15): 158803. doi: 10.7498/aps.68.20190468
    [20] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析. 物理学报, 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
计量
  • 文章访问数:  3742
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-07-14
  • 上网日期:  2021-08-16
  • 刊出日期:  2021-10-05

/

返回文章
返回